Multi-layer graph theory utilisation for improving traceability and knowledge management in early design stages

David Ríos-Zapataa,b,∗, Jérôme Pailhèsb, Ricardo Mejía-Gutiérreza

aDesign Engineering Research Group (GRID), Universidad EAFIT, Carrera 49 # 7 Sur - 50, Medellín, Colombia
bArts et Métiers ParisTech, I2M-IMC, UMR 5295, F-33400 Talence, France

Keywords: Traceability in design, traceability in early design stages, information management model, graph theory in design, decision support system

1. Introduction

One of the more natural aspects related to decision making in design recalls in coming ahead any unexpected interaction, which means, changing one design variable will not affect in a negative matter any other requirement. Managing this type of uncertainty in early design stages is one of main facets to study within the XXI century demands.

In this connection, one of the approaches to handle with uncertainty management is increasing the traceability of the information at early design [1]. Those approaches stimulate the development of new technologies for early design stages, where the appearance of new tools it is being a constant over the last few decades. Likewise, its usage is highly motivated by the automation of different task at those design stages [2], and offering saves in time and money as well [3].

This article is centred in proposing a traceability model to be used in early design stages, offering connections within the evolution of the design parameters from marketing inputs, where inputs are in a linguistic manner (e.g. "the product must be big"), up to variables definitions (length, diameter, etc.). The purpose of this model is to generate sensibility and correlations index between the design variables and the success criteria of each requirement.

2. State of the art

For over a decade the development of tools for supporting early design stages, specially since the lack of tools at those stages is evident [4]; also, the development of tools and methods had empower to increase the success rate in market of new products up to 60% [3].

 Associated to tools, also different design methodologies had also improved the work, allowing time reductions and better team work [5]. Under the frame of this article, three thematic areas are related: design methodologies, traceability and uncertainty.
2.1. Design methodologies

Product design can be divided in four principal stages: clarification of the task, conceptual design, embodiment design and detail design [6]. Under the frame of this article, there will be considered as early design the first three stages, up to the definition of design equations, but not the final value of the geometric entities that are represented as variables in the equations. Also, in those stages it is important to recall how the information evolves from linguistic inputs, to fuzzy numbers and finally into real numbers [7].

From Figure 1, the proposal is centred into using the generated information from well known design methodologies in order to create a traceability tree to empower decision making in design. Within this frame of this research, the following nomenclature will be used: linguistic domain coming from marketing requirements will be called Required properties; Properties is the product behaviour that response to what designers want; the equations of the product will be known as Relations; finally the design variables are divided in two, Characteristics which are the parameters that can be directly influenced by the designers and External Conditions that can not be influenced and are defined by the external environment [8].

2.1.1. Clarification of the task

Related to the work made by the designer, several task are accomplished in order to traduce that linguistic information into technical requirements. For instance, tools like Quality Function Development (QFD) are used to perform this commitment [9]. Also, in terms of generating specifications of the product, functional analysis can be used in order to exploit the relationship of the product with the environment for this purpose [10].

In this phase, is very important for the model that a Functional Analysis be performed, and all the specifications written based in functions (i.e. functions result from octopus diagrams [10]). This will generate the CdCF,1. After designers generate the specifications of the product, the QFD must be performed. This will allow to relate the requirements that are the result of marketing and user understanding with the technical specifications that the product must assure. This CdCF is related to the design criteria to each specification of the product.

2.1.2. Conceptual design

The conceptual design is centred in Pahl & Beitz approach [6]. Nevertheless is important to consider the important to evaluate each function using the CTOC approach [11]. This approach treats each energy flow as: Converter-Transmitter-Operator-Control. Its usage is a key in order to simplify the functions by understanding how energy is transformed and which are the surfaces that act in the process. The goal of these stages is generating a FBD (Function Block Diagram) containing all the fluxes of energy, matter and information.

2.1.3. Embodiment design

In the edge of both phases, designers answer the relations that will engage the behaviour of the solution. Next, the CPM/PDD can be performed [12], generating connections between the equations and the variables and populating with equations each block of the FBD.

2.2. Traceability in early design

Within the last decades, different models had been proposed for early design. Baxter et al. had defined a traceability framework focused in optimising design solutions by analysing the performance of certain requirements [13]. Nevertheless at linguistic levels (requirements definition) many of those information management models deal with poor data traceability [14], and usually the information is only stored at a specific location but it is not exploited [15].

This leads to define the importance of developing tools that can assures high level of detail in the creation of the information links at early design stages [1]. Finally, according to Ouertani et Al., a good traceability tool should identify the dependence of the design terms of variability, sensitivity and integrity [16].

2.3. Uncertainty in early design

Uncertainty is hooked up to decision making in design as one of the main characteristic of the profession itself; designers must somehow anticipate how their decisions will affect the performance of the product [17]. Naturally, design methodologies are developed to reduce this lack of awareness in decision making [7].

In terms of defining the type of information generated and shared, and understanding which, why and when would that information needed by other members of development team, there is a further complexity of design management. And whenever that information is not available, the level of uncertainty is increased because of the assumptions that are needed to be made [18].

For design activities, two types of uncertainties can be described: aleatory and epistemic. The first type is related to the natural randomness of the product characteristics and physical properties. Epistemic is related to the imprecision that happens because lack of knowledge [19]. Moreover, epistemic can divided into five categories: model, phenomenological, behavioural, ambiguity and interaction [20].

In order to treat uncertainty, Malmiry et Al. had defined a functional modelling approach, for early design that is handles both types of uncertainty by the use of CPM/PDD modelling [12]. Within the interpretation of functions, and its definitions into equations, this approach manages uncertainty by
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات