
Transaction reordering

Gang Luo a,*, Jeffrey F. Naughton b, Curt J. Ellmann b, Michael W. Watzke c

a IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
b University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI 53706, USA
c Teradata, 5752 Tokay Blvd Suite 400, Madison, WI 53719, USA

a r t i c l e i n f o

Article history:
Available online 31 August 2009

Keywords:
Data warehousing
Workload management
Transaction reordering
Continuous data loading
Synchronized scans

a b s t r a c t

Traditional workload management methods mainly focus on the current system status
while information about the interaction between queued and running transactions is lar-
gely ignored. This paper proposes using transaction reordering, a workload management
method that considers both the current system status and information about the interac-
tion between queued and running transactions, to improve the transaction throughput in
an RDBMS. Our main idea is to reorder the transaction sequence submitted to the RDBMS
to minimize resource contention and to maximize resource sharing. The advantages of the
transaction reordering method are demonstrated through experiments with three com-
mercial RDBMSs.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Traditional workload management methods mainly focus on the current system status [1,2]. For example, in a typical
RDBMS, the load controller only allows a certain number of complex queries to run concurrently. Also, if the system is in
the danger of thrashing (i.e., admitting more transactions for execution will lead to excessive overhead and severe perfor-
mance degradation [1]), the load controller may choose not to run any new transactions.

To support modern applications, users are continually requiring higher performance from RDBMSs. To meet this require-
ment, it is natural to ask whether or not we can use information about the interaction between queued and running trans-
actions to improve the existing workload management methods. The answer to this question is ‘‘yes.” In fact, in many
instances, it is possible to improve the throughput of an RDBMS through the utilization of such information. More specifi-
cally, we can improve the throughput of an RDBMS that is processing a sequence of transactions by reordering these trans-
actions before submitting them for execution. This is due to opportunities for either resource sharing among multiple
transactions (e.g., sharing data in the buffer pool, or perhaps even sharing intermediate computations common to several
transactions) or lowering resource contention (e.g., avoiding lock conflicts). Information about the interaction between
queued and running transactions is essential in capturing such opportunities.

There are two main reasons why transaction reordering might be effective. The first is system independent – for example,
it might be that a reordering of a transaction sequence truly eliminates some intrinsic lock conflicts between adjacent trans-
actions and/or makes resource sharing possible. The second is system dependent – for example, a system may have a par-
ticular implementation of buffer management or concurrency control that renders one order of transactions superior to
another. Even reordering to exploit system dependent opportunities is useful. Commercial RDBMSs are large, complex pieces
of code, and changes in functionality can require a very long design-implement-test-release cycle. In many cases it may be

0169-023X/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2009.08.007

* Corresponding author. Tel.: +1 914 784 6932; fax: +1 914 784 6040.
E-mail addresses: gangluo@cs.wisc.edu, luog@us.ibm.com (G. Luo), naughton@cs.wisc.edu (J.F. Naughton), ellmann@wisc.edu (C.J. Ellmann),

michael.watzke@teradata.com (M.W. Watzke).

Data & Knowledge Engineering 69 (2010) 29–49

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/locate /datak

http://dx.doi.org/10.1016/j.datak.2009.08.007
mailto:gangluo@cs.wisc.edu
mailto:luog@us.ibm.com
mailto:naughton@cs.wisc.edu
mailto:ellmann@wisc.edu
mailto:michael.watzke@teradata.com
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak

far simpler to do some reordering of transactions outside of the RDBMS before submitting them to the RDBMS for execution
than it would be to change, say, the concurrency control subsystem of the RDBMS. This is especially true for database appli-
cation developers who are unable to change the database engine.

This paper presents a general transaction reordering framework, which utilizes both the current system status and infor-
mation about the interaction between queued and running transactions. The basic concept is simple and shown in Fig. 1. In
an RDBMS, generally, at any time there are M1 transactions waiting in a FIFO transaction admission queue Q to be admitted
to the system for execution, while another M2 transactions forming a set Sr are currently running in the system. Such a trans-
action admission queue Q is commonly used for load control purpose [1,2].

Those transactions in the transaction admission queue Q are the candidates for reordering. That is, the reorderer reorders
the transactions waiting in Q so that the expected throughput of the reordered transaction sequence exceeds that of the ori-
ginal transaction sequence. In its reordering decisions, the reorderer exploits properties it deduces about the blocked trans-
actions in Q and the properties it knows about the active transactions in Sr . The improvement in overall system throughput is
a function of (a) the number of factors considered for reordering transactions, and (b) the quality of the original transaction
sequence. The more factors considered, the better quality the reordered transaction sequence has. However, the time spent
on reordering cannot be unlimited, as we need to ensure that the reordering overhead is smaller than the benefit we gain in
throughput. Also, we need to ensure acceptable transaction response time in the sense that no transaction is subject to
starvation.

There are a wide range of reordering algorithms that could be used. At the extremes, we could:

(1) Do no analysis. Run all the transactions in the order that they arrive at the RDBMS.
(2) Take a snapshot of the system. Analyze every possible order of the transactions and record the corresponding through-

put. Pick the optimal order to run all the transactions.

The first extreme may be undesirable if some amount of reordering can improve the throughput. The second extreme is obvi-
ously unrealistic due to the exponential analysis overhead. Our goal is to find a good compromise between these two
extremes. That is, under the constraint of acceptable transaction response time, we want to maximize the difference
between the gain in throughput and the reordering overhead.

Reordering transactions requires CPU cycles. However, the increasing disparity between CPU and disk performance ren-
ders trading CPU cycles for disk I/Os more attractive as a way of improving DBMS performance [3]. As shown in detail in
Section 4 below, some forms of transaction reordering can be regarded as a way to trade CPU cycles for disk I/Os. Also,
our experiments in three commercial RDBMSs show that with minor overhead, our transaction reordering method greatly
improves the throughput of a targeted class of transactions while it has only a minor impact on the throughput of other clas-
ses of transactions.

There are many resource allocation factors that can be considered for transaction reordering. In this paper, due to space
constraints, we only consider two factors: lock conflicts (with an application to materialized view maintenance [4]) and buf-
fer pool performance (with an application to exploiting synchronized scans [5]).

Transaction reordering can be implemented in two places: (1) inside the RDBMS, or (2) outside the RDBMS as an add-on
module. These two choices are shown in Fig. 2, where the dotted rectangle denotes the RDBMS. The inside-RDBMS choice af-
fords more opportunities for reordering, as the reorderer is tightly integrated with the RDBMS and can use detailed informa-
tion about the current state of the system. Also, certain reordering policy (such as the one described in Section 4 for exploiting
synchronized scans) can only be implemented using the inside-RDBMS choice if it requires support of other modules in the
RDBMS. The outside-RDBMS choice has the advantage of not needing to change the database engine and is especially suitable

Q

Sr

move transaction from Q to Sr

transaction enters Q

transaction leaves Sr

…

…

Fig. 1. The general transaction reordering framework.

(1) reorderer resides inside the RDBMS (2) reorderer resides outside the RDBMS

parser & optimizer

reorderer

query execution engine

transaction

parser & optimizer

reorderer

query execution engine

transaction

Fig. 2. Transaction reordering architecture.

30 G. Luo et al. / Data & Knowledge Engineering 69 (2010) 29–49

http://isiarticles.com/article/9280

