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a b s t r a c t 

We present a simple mathematical model and numerical simulations of the hexagonal pat- 

tern formation of a honeycomb using the immersed boundary method. In our model, we 

assume that the cells have a circular shape at their inception and that there is a force act- 

ing upon the entire circumference of the cell. The net force from the individual cells is a 

key factor in their transformation from a circular shape to a rounded hexagonal shape. Nu- 

merical experiments using the proposed mathematical model confirm the hexagonal pat- 

terns observed in honeybee colonies. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Honeybee nests are organized into parallel and vertically aligned self-synthesized wax combs. Both sides of the comb 

consist of arrays of hexagonal cells that house the brood and store resources. In a regular hexagonal cell, the six sides 

adjoin at a 120 ° degree angle [1] . The hexagonal structure appears in several studies in various research fields, such as pat- 

tern formation [2] , honeycomb network [3] , cationic liposome-DNA [4] , and honeycomb formation [1,5] . The honeycomb is 

the most studied natural cellular structure [6] . Despite this, there is an ongoing debate about how these hexagonal cells 

are produced. For example, according to some sources, the comb structure is a result of a thermoplastic wax reaching a 

liquid equilibrium [7] . However, according to other researchers, the hexagonal structure is not produced via a liquid equilib- 

rium process [1] . It was reported that the cells in a natural honeybee comb have a circular shape at inception but quickly 

transform into the well-known rounded hexagonal shape, see Fig. 1 . Several studies on the honeycomb structure have been 

carried out [5,8] . 

In this study, we propose a simple mathematical model and perform numerical simulations of the hexagonal pattern for- 

mation of a honeycomb using the immersed boundary method [9] . The basic mechanism of our model as follows: First, we 

set the cells which have a circular shape at their birth. Second, we compute forces acting upon the entire circumference of 

the individual cells. Third, we calculate the net force from the individual cells. Fourth, we move the cell boundaries accord- 

ing to the net force. We repeat these last three steps until it reaches an equilibrium state or a specified time. Computational 

experiments of the proposed mathematical model demonstrate the hexagonal patterns observed in honeybee colonies. 

The importance and advantage of the studied model is that we can generate complex hexagonal pattern using a simple 

mathematical model and has applications such as patient-specific 3D-printed cast, which will be described in more detail 

in Section 3.10 . 
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Fig. 1. Italian honeybee comb cell. (a) Inception and at (b) 2-day-old, scale bar is 2 mm. Reprinted from Karihaloo et al. [6] with permission from the Royal 

Society. 

The novelty of the paper is to propose a mathematical model for a fundamental formation of hexagonal honeycomb 

structure and apply an efficient and accurate numerical method for solving the governing equation. 

To the authors’ knowledge this is the first attempt to model and simulate hexagonal pattern formation of the honeycomb 

structure in a large scale, including the interactions of cells. So far, most researches on hexagonal pattern formation focused 

on self-organized formation of hexagonal pattern through phase separation [10] or investigated the strength and stiffness 

under shear or compression [11–15] . 

The organization of this paper is as follows. In Section 2 , we present the proposed mathematical model and numerical 

method for the hexagonal pattern formation. We present the simulation results in Section 3 . In Section 4 , conclusions are 

presented. 

2. Mathematical model and numerical method 

To model and simulate the hexagonal pattern formation of the honeycomb, we use the immersed boundary method 

(IBM) as a computational tool. This method was introduced by Peskin to study flow patterns around heart valves [9] . The 

IBM has been used by several researchers in various studies [16,17] . 

In the IBM, the fluid is represented on an Eulerian coordinate and the elastic structure is represented on a Lagrangian 

coordinate. The immersed elastic structures are typically represented as a collection of points. The velocity and pressure are 

defined on the Eulerian coordinate. The force exerted by the flexible structure on the fluid is considered as a source term in 

the momentum equation using a Dirac-delta function. Then, the Lagrangian points move with the fluid velocity interpolated 

through the Dirac-delta function. The governing equations are discretized by an Eulerian grid on the fluid and a Lagrangian 

grid on the immersed boundary. Approximations of the Dirac-delta function by a smoother function allow us to interpolate 

between the Eulerian and Lagrangian coordinates. Please refer to [18,19] and references therein for more details about the 

IBM. 

Let X k (s, t) = ( ̃  x k (s, t) , ̃  y k (s, t)) be the immersed boundary for the k th cell at time t for 1 ≤ k ≤ N k , where 0 ≤ s ≤ L k ( t ) and 

L k ( t ) is the time-dependent length of the k -th boundary. Here, N k is the number of closed loops. Because the boundary is a 

closed curve, X k (0 , t) = X k (L k (t ) , t ) . See Fig. 2 . 

We assume the cell boundaries move according to a net force on the boundaries and propose the following evolution 

equation: 

∂X k (s, t) 

∂t 
= αF (X k (s, t)) , (1) 

where α is a proportional constant value and F is the net force resulting from the forces exerted outwardly by the individual 

cell boundaries, such as mechanical force or the heat flux caused by the honeybees [7] . Eq. (1) can be considered as a special 

case of the general Lagrange’s equations of motion for X k [20] . Lagrangian simulations have been studied in various fields 

[21,22] . 

Let a computational domain � = (0 , L x ) × (0 , L y ) be partitioned in Cartesian geometry into a uniform mesh with mesh 

spacing h as shown in Fig. 2 . The center of each computational cell �ij is located at x i j = (x i , y j ) = ((i − 0 . 5) h, ( j − 0 . 5) h ) 

for i = 1 , . . . , N x and j = 1 , . . . , N y . Here, N x and N y are the numbers of cells in the x - and y -directions, respectively. We use 

M Lagrangian points X 

n 
k,l 

= ( ̃  x n 
k,l 

, ̃  y n 
k,l 

) for l = 1 , . . . , M at t = n �t to discretize the k th immersed boundary. Here, �t is the 

temporal step size. At X 

n 
k,l 

, the corresponding outward unit normal vector n 

n 
k,l 

can be calculated by using three points X 

n 
k,l−1 

, 

X 

n 
k,l 

, X 

n 
k,l+1 

with the quadratic polynomial approximations [23] 

˜ x (t) = α1 t 
2 + β1 t + γ1 and 

˜ y (t) = α2 t 
2 + β2 t + γ2 . 
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