Vertically aligned NiS nano-flakes derived from hydrothermally prepared Ni(OH)$_2$ for high performance supercapacitor

A. M. Patila, A. C. Lokhandeb, P. A. Shindea, J. H. Kimb,c, C. D. Lokhandea,c,**

aThin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 MH, India
bDepartment of Materials Science and Engineering, Chonnam National University, 300 Yongbong-Dong, Puk-Gu, Gwangju, South Korea
cCentre for Interdisciplinary Research, D. Y. Patil University, Kolhapur, India

Article Info

In present work, the vertically aligned NiS nano-flakes composed thin film is prepared by anionic exchange process in which hydrothermally prepared Ni(OH)$_2$ is used as a parent thin film and Na$_2$S as a sulfide ion source. This synthesis process produced fully transformed and shape-controlled nano-flakes of NiS from nano-flowers of Ni(OH)$_2$. The electrochemical supercapacitor properties of NiS electrode are studied with cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. Highly porous surface area (85 m2/g) of NiS nano-flakes makes large material contribution in electrochemical reaction stretching specific capacitance (C_s) of 880 F/g at scan rate of 5 mV/s and 90% electrochemical stability up to 4000 CV cycles in 2 M KOH electrolyte. Further, the flexible solid-state symmetric supercapacitor device (NiS/PVA–LiClO$_4$/NiS) has been fabricated using NiS electrode with polyvinyl alcohol (PVA)–lithium perchlorate (LiClO$_4$) gel electrolyte. The NiS/PVA–LiClO$_4$/NiS device exhibits specific capacitance of 56 F/g with specific energy of 14.98 Wh/kg and excellent cycling stability after 2000 cycles. In addition, the NiS/PVA–LiClO$_4$/NiS device demonstrates illumination of red light emitting diode (LED) for 60 s, which confirms the practical applicability of NiS/PVA–LiClO$_4$/NiS device in energy storage.

© 2017 Published by Elsevier B.V. and Science Press.

1. Introduction

In present day, rising demands for power sources of transitory high power density have motivated a great attention in supercapacitor with major uses in digital cameras, electronic hybrid vehicles and memory back-up devices, which require higher specific power density (PD) [1]. The fast development of the worldwide economy elevates the enervation of fossil fuels as well as growing environmental pollution. There is a need of proficient, unpolluted, and supportable sources of energy and new technologies connected with energy storage [2]. Supercapacitor exhibits emerging, fascinating and substituting to battery and ordinary capacitor due to its vital properties like fast charging-discharging, higher PD and excellent electrochemical cycling stability [3]. Supercapacitor store electric charges at the interface of electrolyte and electrode. Supercapacitors can be divided in to two types on the basis of different energy-storage mechanisms as electrochemical double layer capacitor (EDLC) and pseudocapacitor, which store charges by charge separation at electrode-electrolyte and at electrode interface by faradaic charge transfer reaction, respectively. In comparison, the pseudocapacitor offers a higher specific capacitance (C_s) than EDLCs because of their fast charge-discharge faradaic reaction. Generally, carbon materials such as graphene oxide (GO), carbon nano tubes (CNT) and carbon aerogel exhibit the properties of EDLC [4,5] and metal oxides [6,7], metal sulfides [8] and conducting polymers [9] are used as a pseudocapacitive material. To overcome drawbacks like lower specific energy density (ED) and electrochemical cycling stability, a new species of hybrid capacitor is developed.

In order to improve the storing capacity of supercapacitors, there is a need of particular highly porous morphological electrodes. Accordingly, metal sulfides have much attention because of their facile preparation and excellent performance with nanostructured surface morphologies [10–12]. Al-doped β-NiS mesoporous nanoflowers show excellent energy density (36.6 Wh/kg) as well as power density (12,296 W/kg) [13]. Yan et al. [14] synthesized porous NiS nanoflake arrays by ion exchange method and achieved an energy density of 14.1 Wh/kg. Alternatively, results of current

http://dx.doi.org/10.1016/j.jechem.2017.05.005

2095-4956/© 2017 Published by Elsevier B.V. and Science Press.

Please cite this article as: A.M. Patil et al., Vertically aligned NiS nano-flakes derived from hydrothermally prepared Ni(OH)$_2$ for high performance supercapacitor, Journal of Energy Chemistry (2017), http://dx.doi.org/10.1016/j.jechem.2017.05.005
Schematic 1. Formation of NiS nano-flakes by anionic exchange process using Ni(OH)$_2$ micro-flowers.

Schematic 2. (a) Painting of PVA-LiClO$_4$ electrolyte on NiS electrode deposited on flexible SS substrate, (b) symmetric NiS/PVA-LiClO$_4$/NiS device, (c) flexibility of device and (d) schematic for fabrication of NiS/PVA-LiClO$_4$/NiS device.

Research indicate that metal sulfides are applicable for pseudocapacitor applications [15]. Nickel sulfide inaugurate an important type of metal sulfide having different phases such as NiS, NiS$_2$, Ni$_3$S$_2$, Ni$_5$S$_4$, Ni$_7$S$_6$, and Ni$_9$S$_8$ with application in dye-sensitized solar cells, supercapacitors and lithium ion batteries [16–20]. Peng et al. [21] reported C_s of 845 F/g for NiS nanoparticles synthesized by microwave-assisted method. Yang et al. [22] prepared NiS nanorods, which exhibit C_s of 583.2 F/g. The metal hydroxide/oxide shows lower electric conductivity compared to metal sulfides. Because of lower conductivity, metal hydroxide/metal oxides have lower supercapacitor performance. Zang et al. [23] synthesized Ni(OH)$_2$/rGO composite by solvothermal method and reported C_s of 2100 F/g. Further, metal sulfides show better electrochemical performance compared to metal hydroxides/oxides.

Please cite this article as: A.M. Patil et al., Vertically aligned NiS nano-flakes derived from hydrothermally prepared Ni(OH)$_2$ for high performance supercapacitor, Journal of Energy Chemistry (2017), http://dx.doi.org/10.1016/j.jechem.2017.05.005
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات