Research Paper

Design considerations for an Ericsson engine equipped with high-performance gas-to-gas compact heat exchanger: A numerical study

N.P. Komninos*, E.D. Rogdakis

Applied Thermodynamics Laboratory, Thermal Engineering Section, School of Mechanical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechon St, Zografou Campus, 15780 Athens, Greece

HIGHLIGHTS

- Multi-passing improves gas energy exploitation but increases gas-side pressure drop.
- Multi-passing requires compensation in flow areas to reduce gas-side pressure drop.
- Larger heaters increase heat flow and engine power but decrease thermal efficiency.
- Performance improves at higher loads but gas-side pressure drop increases.

ARTICLE INFO

Keywords:
Ericsson engine
Simulation model
Heat exchanger
Heat transfer coefficient
Pressure drop
Multi-passing

ABSTRACT

A new simulation model is presented for the simulation of the open cycle Ericsson engine operation on a crank-angle basis. The model simulates the compressor and expander operation as well as their interactions with a compact gas-to-gas heat exchanger selected from the literature based on its high heat-transfer-area-to-volume ratio. Hot gases passing through the hot side of the exchanger are the heat source that heats the compressed air, which is considered the working gas. The analysis considers both sides of the heat exchanger. Factors such as pressure drops in the air and gas streams, free-flow areas, heat transfer coefficients, heat exchanger effectiveness and heat transfer rate are considered to determine the engine performance. These factors guide the threefold numerical investigation presented herein. The effects of heater geometry and configuration (single- or multi-passing) are first analyzed and elucidate the importance of gas-side pressure drop. Next, the effect of the heat exchanger size is considered that highlights the importance of heat transfer areas and heater pressure fluctuations that affect the work produced. Finally the effect of heat source temperature on the engine performance is determined. All trends observed are analyzed and explained on a crank-angle basis, to elucidate the essential variables that link the overall engine performance to the physical phenomena evolving in the devices.

1. Introduction

The ever-increasing energy demands for power and heat, as well as environmental concerns have lead current research to seek alternative solutions for power generation, improve existing power producing engines, and efficiently exploit wasted heat from power plants and combustion processes [1]. Internal combustion engines have dominated for many years due to their high power density, their simple construction, and the experience gained following years of research and development. However, the need for cleaner and more efficient engines places stringent demands on the engine design and manufacturing process. Often these demands lead to the introduction of additional control systems or to the refinement of existing ones, and increase the manufacturing and service costs. Furthermore, recent research has shown that even with current technological advancements the emissions from an appreciable number of heavy- and light-duty diesel engine vehicles exceed certification limits [2].

In view of the energy and environmental concerns, efforts have been made to introduce new concepts for power production. Towards this goal, small scale or micro combined heat and power (micro-CHP) units have been proposed for domestic use [1,3–8], referring to power production of the order of 10 kW. A number of commercial CHP units exist and a comparative experimental study has been performed comparing the performance of natural-gas-fueled Stirling and internal combustion engines for domestic small-scale production of heat and power [3].

Stirling engines belong to the broader classification of external
combustion engines, which provide heat source flexibility. Thus, various fuels may be used, if combustion is selected to provide heat, or renewable sources may be incorporated, such as solar energy [9]. Another external combustion engine, which has not been extensively studied, is the Ericsson engine operating on air. The air-standard thermodynamic Ericsson cycle comprises of four processes: isothermal compression, isobaric heat addition, isothermal expansion, and isobaric cooling. In practice, the Ericsson engine resembles an open- or closed-circuit gas turbine, with the compressor and turbine replaced by their reciprocating counterparts. It is probably for this reason that various terms have been given to these configurations: for the closed circuit the term “externally heated valve engine” (EHVE) has been used [10]; the terms “volumetric hot-air Joule engine” [11,12], “open Joule cycle Ericsson engine” [13], “open Joule cycle reciprocating Ericsson engine” [14], and “reciprocating Joule cycle engine” [15] have been used to describe the open circuit configuration. In its simplest form the open
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه‌شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات