Urban Equilibrium for sustainable cities and the contribution of timber buildings to balance urban carbon emissions: A New Zealand case study

Andrea Stoccheroa,*, Jeffrey K. Seadona, Ruth Falshawa, Michael Edwards c

a Scion, Private Bag 3020, Rotorua 3046, New Zealand
b Centre for the Urban Built Environment, School of Engineering, AUT University, Private Bag 92006, Auckland 1142, New Zealand
c Sequal Lumber, PO Box 3, Kawerau 3169, New Zealand

ARTICLE INFO

Article history:
Received 9 March 2016
Received in revised form 14 November 2016
Accepted 5 December 2016
Available online xxx

Keywords:
Urban Equilibrium
Climate change
Building construction
Sustainability
Greenhouse gas emission
Carbon neutrality

ABSTRACT

In the current study, Urban Equilibrium is defined as the situation where buildings in an urban environment act as a balancing agent for the greenhouse gas emissions of the urban area; therefore the buildings act like carbon pools. Cities contribute significantly to pollution, and the move to more, and larger, cities is increasing. The whole-of-life role of timber in future urban developments as a contributor to balance urban carbon emissions is considered here using a new concept of Urban Equilibrium. When applied to Auckland, New Zealand, as a case study, maximising the use of timber in future urban developments demonstrated that Auckland’s target of a 40% carbon emissions reduction by 2040 could be achieved 20% faster than planned while still meeting the city’s future growth needs. This strategy is complementary to, and easy to integrate with, other strategies and policies for greenhouse gas mitigation. However, the Urban Equilibrium concept is broader than this and can also be applied in other aspects relating to the sustainability of urban environments. Urban Equilibrium fosters a framework of urban governance that integrates environmental and social development agendas with economic development. This holistic approach takes into account the various effects that economic development can have, and re-defines the concept of growth to include a moral obligation to future generations.

© 2016 Published by Elsevier Ltd.

1. Introduction

Cities currently occupy 1% of the earth’s surface but contain 50% of the world’s population, consume 75% of the world’s energy and emit 80% of the greenhouse gases (GHG) (Wuppertal Institute for Climate Environment and Energy, 2009). Ideally, urban areas should exist in equilibrium with the environment to be sustainable in the long term. The phrase “Urban Equilibrium” has already been used in relation to urban economies, land use, transport, housing supply/demand and planning (Capello, 2013; Dai et al., 2010; De Lara et al., 2012; Kilani et al., 2010; Simmonds et al., 2013; Verhoeof and Nijkamp, 2008; Wu et al., 2004) but it has not been used previously in relation to urban GHG emissions and climate change (CC).

The current study introduces a new concept where Urban Equilibrium (UE) is applied in relation to urban GHG emissions and CC with a specific definition: where the structures that define an urban environment act as a balancing agent for the greenhouse gas emissions of the urban area; therefore the buildings act like carbon pools (David Turner, Executive Director of Sequal Lumber Ltd. Pers comm. 2014). In this novel concept of UE, the whole-of-life role of timber in future urban developments is evaluated for its contribution in balancing out urban carbon emissions and involves three types of carbon mitigation, as defined in Equation (1):

\[
\text{UE} = \text{Sequestration optimisation} + \text{Storage maximisation} + \text{Emission minimisation}
\] (1)

This terminology is used throughout the paper. The UE approach emphasises the role of timber in future urban developments on the basis that the environmental benefits provided by such an approach will extend synergistically to social and economic areas. However, the UE approach is broader than that, and can be applied...
to different aspects within urban environments. Ideally, it builds on the ‘sustainable city concept’ developed by the United Nations that provides an operational model for sustainable cities. No one size fits all so policies and management measures need to be tailor-made to take into account the challenges and opportunities driven by the idiosyncrasies of different urban environments “to ensure solutions that are both functional and economically feasible” (Falconer and Mitchell, 2012; United Nations DESA, 2013). Hence, UE involves a systems approach that incorporates whole-of-life thinking within an entire urban environment, with the aim of assisting urban governors to manage pollutants in an urban system. By doing this, UE provides considerable scope for more sustainable future urban developments. Urban policy makers need to respond to future growth needs in cities while addressing GHG mitigation and this study demonstrates, in particular, the benefits of greater utilisation of timber in future building construction.

Timber has various carbon-mitigation benefits: trees remove (sequester) carbon as they grow, and wood is a long-term carbon store until trees and wooden products reach the end of their useful life and are either burnt or degrade. Only then is the carbon partially released back in the atmosphere. Evaluating the environmental benefits of using timber in construction is not new, but previous studies have generally focused only on single buildings. The novelty of this project, and of the proposed UE concept, is to consider the advantages of multiple timber-building developments in an urban environment. Conducting an evaluation of alternative development options at an urban scale presents many challenges, complexities and uncertainties. For example, all the buildings within a built environment would need to be individually assessed, compared and their actual timber content summed to generate the overall urban figure, but this procedure is infeasible when considering future urban growth scenarios. Instead, the objectives of this study were to: raise awareness of the underlying potential of maximising the use of timber in future urban developments by incorporating and applying the concept of UE; and assess the broader implications this potential may have for urban governments to achieve sustainable urban environments. These objectives were achieved by assessing published literature to identify appropriate data then applying these in a high-level case study within Auckland, New Zealand. Such an approach can then be applied to any developing urban environment worldwide.

New Zealand is at the upper end of the international urbanisation spectrum with over 87% of the population living in urban environments. The country is currently facing an important challenge to keep its international image of being sustainable with a healthy environment. The country is currently facing an important challenge to keep its international image of being sustainable with a healthy environment. The country is currently facing an important challenge to keep its international image of being sustainable with a healthy environment. The country is currently facing an important challenge to keep its international image of being sustainable with a healthy environment. Auckland's forecasted commercial space needs show that, by 2031, the expected total emission reduction for the 20 year period that provides for land capacity over the next 30 years for 280,000 new dwellings within the Metropolitan Urban Limit (MUL) baseline and 160,000 new dwellings in new greenfield and satellite towns and other rural and coastal towns to be constructed in Auckland for the next 30 years (Auckland Council, 2014a).

Auckland Council expects medium-to-high rise building development to occur within the MUL and a low-to-medium rise development in the new greenfield land, satellite towns and other rural and coastal towns (Auckland Council, 2014a). In this high-level case study, the city development has been assumed to happen linearly over the 30-year time frame considered by the Auckland Council. This will result in an average of 14,660 new dwellings being constructed per year for the next 30 years of which 9330 residential units will be within the MUL (assumed 50% medium-rise and 50% high-rise), 5330 units will be other areas within the Rural Urban Boundary per year (assumed 50% low-rise and 50% medium-rise).

Supporting social infrastructure development (e.g. hospitals, courts, schools, etc) is also expected to be built or adapted (Auckland Council, 2014a). The forecast 1.7M m² of additional education and health floor-space development averages 55,000 m² y⁻¹ over a 30-year timeframe (Auckland Council, 2014a). Educational buildings were used as a proxy for social infrastructure adaptation as the Plan identifies young people as a top priority. By 2040, the population of children is expected to increase by almost 100,000 (Auckland Council, 2014a), which equates to an approximate increase of 3300 students per year.

Auckland forecasts commercial space needs shows that, by 2041, an additional 2.97M m² of office floor space and 1.8M m² of retail floor space will be needed compared to 2011 (Auckland Council, 2013). The increase equates to 99,000 m² of office space and 60,000 m² of retail floor area annually.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات