Accepted Manuscript

Research Paper

Investigation of a novel integrated process configuration for natural gas liquefaction and nitrogen removal by advanced exergoeconomic analysis

Mehdi Mehrpooya, Mohammad Mehdi Moftakhari Sharifzadeh, Hojat Ansarinasab

PII: S1359-4311(16)33806-6
DOI: http://dx.doi.org/10.1016/j.applthermaleng.2017.09.088
Reference: ATE 11145

To appear in: Applied Thermal Engineering

Received Date: 6 December 2016
Revised Date: 11 July 2017
Accepted Date: 17 September 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Investigation of a novel integrated process configuration for natural gas liquefaction and nitrogen removal by advanced exergoeconomic analysis

Mehdi Mehrpooya1,2,*, Mohammad Mehdi Moftakhari Sharifzadeh2,3 and Hojat Ansarinasab4

1Renewable Energies and Environmental Department, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
2Hydrogen and Fuel Cell Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
3Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
4Faculty of Energy Systems Engineering, Petroleum University of Technology (PUT), Iran

A novel integrated process configuration for natural gas liquefaction and nitrogen removal is introduced and analyzed. The process configuration and specification of the streams and components are presented. Next the process is evaluated by the conventional and advanced exergy and exergoeconomic methods. Based on the results exergy efficiency and exergy destruction rates of the process are gained 41.27 \% and 89,904 kW, respectively. Exergy destruction and investment cost rates within the process components are divided into avoidable-unavoidable and endogenous-exogenous parts. From this analysis, improvement potentials of the process component's performance and investment costs of the process were determined by using the economic relations between them. The results indicate that exergy destruction and investment cost rates in the process components are endogenous. The process components interactions do not affects the exergy efficiency significantly. The cost of exergy destruction in the compressors is avoidable while investment costs in these components are unavoidable. The cost of exergy destruction in the heat exchangers and air coolers is unavoidable while investment costs in these components are avoidable.

\textbf{Keywords:} Natural gas liquefaction, nitrogen removal, advanced exergoeconomic and integration

*Corresponding author. Renewable Energies and Environmental Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
Tel.: +98 21 86093166; fax: +98 21 88617087.
E-mail addresses: mehrpoya@ut.ac.ir, (M. Mehrpooya).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات