Bridging the industrial energy efficiency gap – Assessing the evidence from the Italian white certificate scheme

Jan Stede

German Institute for Economic Research (DIW Berlin), Climate Policy Department, Mohrenstr. 58, 10117 Berlin, Germany

ARTICLE INFO

JEL codes:
D22
D82
L14
L97
Q48

Keywords:
White certificates
Energy efficiency obligations
Policy evaluation
Energy Service Companies (ESCOs)
Industrial energy savings
Market barriers

ABSTRACT

The Italian white certificate scheme is the main national policy instrument to incentivise energy efficiency of the industrial sector, with savings from white certificates amounting to 2% of Italy's 2012 primary energy consumption. The mechanism sets binding energy-saving targets on electricity and gas distributors with at least 50,000 clients and includes a voluntary opt-in model for participation from other parties. This paper investigates and assesses the elements of the scheme that help overcome several barriers to deliver industrial energy efficiency. Results from a survey conducted among leading experts indicate that the Italian system provides a strong financial incentive to energy efficiency investments, covering a significant share of investment costs and thus reducing payback time. Moreover, the scheme fosters the development of energy service companies (ESCOs), which are key to developing, installing and arranging finance for projects on the ground. In conjunction with other policies, the mechanism also raises awareness of energy efficiency investment opportunities, thus helping overcome the market failure of insufficient information. Core challenges remain, including tackling regulatory uncertainty and improving access to finance.

1. **Introduction**

Improving energy efficiency is one of the most cost-effective ways to curb greenhouse gas emissions and improve energy security. The EU Energy Efficiency Directive (EED) sets a 20% energy savings target by 2020, and energy efficiency is one of the five dimensions of the EU's Energy Union Strategy (EC, 2015). Despite being a central pillar of European energy and climate policy, many barriers have been found to prevent the implementation of an economically efficient level of energy efficiency investments.

The Italian white certificate scheme is an instrument designed and introduced to help overcome this 'energy efficiency gap' (Jaffe and Stavins, 1994). Through energy efficiency obligations (EEOs) it imposes binding energy efficiency targets on obligated parties over a given period of time. Achieved savings are then credited with certificates, which can be traded on a market. Energy efficiency measures can potentially be carried out in all end-use sectors. Italy's 2014 National Energy Efficiency Action Plan (NEEAP) establishes the Italian white certificate mechanism as the main instrument to comply with the Energy Efficiency Directive (MiSE, 2014). The industrial sector is at the heart of the Italian white certificate scheme – it is expected to deliver 94% of the energy savings under the white certificate scheme up to 2020. EEOs are also gaining importance across the EU – six European countries have already implemented energy efficiency obligations and ten others are planning their introduction (ENSPOL, 2016, 2015).

In recent years, Italy has succeeded to shift the majority of energy efficiency measures within its white certificate scheme from the residential and tertiary sector to industry, a sector responsible for 25% of EU final energy consumption (Eurostat, 2014). Despite the economic downturn, Italy is still the EU’s fourth largest economy and its second biggest manufacturing power. At the same time, Italy has the highest electricity prices of the major European economies and an energy dependency rate of more than 75%, well above European average (Eurostat, 2015a, 2015b). Consequently, improving competitiveness of the Italian industrial base through energy efficiency measures is an important national strategic priority (MiSE and MATTM, 2013).

The goal of this paper is to identify the factors that explain the success of the Italian white certificate scheme and to develop recommendations for other countries that consider introducing policies to
address the energy efficiency gap. The analysis is primarily based on a survey conducted amongst leading experts during the annual conference on the Italian white certificates taken place in Rome on 19–20 March 2015. The survey highlights, first, a range of drivers incentivising industrial energy efficiency investments within the scheme, as well as remaining barriers. Moreover, it was possible to quantify the scale of the monetary incentive as the share of investment costs typically covered by white certificates and to identify the reduction in payback time of investment projects. A third focus is the role of energy service companies (ESCOs) in Italy. ESCOs are part of the energy services sector, which has so far achieved the majority of energy savings in the Italian white certificates mechanism.

The paper is structured as follows. Section 2 develops a taxonomy of barriers to industrial energy efficiency investments and illustrates the role the energy services sector can play to overcome the energy efficiency gap. Section 3 describes how white certificates systems work and analyses their implementation in Italy. Section 4 assesses the drivers for industrial energy efficiency investments in Italy, building on an analysis of the results of the survey carried out at the high-level conference in Rome. Section 5 develops policy recommendations and concludes.

2. Overcoming barriers to energy efficiency with the energy services industry

Past research has shown that the number of energy efficiency measures carried out is consistently below what seems to be economically efficient, due to a range of different investment barriers (Thollander and Palm, 2013).

2.1. A taxonomy of barriers to industrial energy efficiency

Table 1 presents a taxonomy of barriers to energy efficiency investments that are relevant in the Italian industrial sector, subdivided into the three categories financial, informational/behavioural/institutional and external.

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short payback periods</td>
<td>Firms do not carry out investments with payback times longer than 2–5 years due to risks associated with the investment</td>
</tr>
<tr>
<td>Limited access to capital</td>
<td>Insufficient own capital (equity), access to external financing difficult as banks are unwilling to lend</td>
</tr>
<tr>
<td>Imperfect information</td>
<td>Lack of credible information, e.g. due to search costs or low trustworthiness of the information source</td>
</tr>
<tr>
<td>Lack of skilled personnel</td>
<td>Maintaining internal competences for energy management and training personnel is costly</td>
</tr>
<tr>
<td>Low priority of energy efficiency measures</td>
<td>Organisations focus on core production activities, neglecting energy efficiency investment opportunities (bounded rationality)</td>
</tr>
<tr>
<td>Regulatory uncertainty</td>
<td>Ambiguities of existing regulation, undefined long-term policy goals</td>
</tr>
</tbody>
</table>

2.2. The energy services industry

The energy services industry, in particular energy service companies (ESCOs), is hailed by many experts as a promising means of overcoming many of the barriers to industrial energy efficiency (e.g. Sorrell et al., 2000). Strengthening the energy services industry and developing ‘green’ supply chain is also an explicit goal of Italy’s National Energy Strategy (MiSE and MATTM, 2013).

Energy service contracting involves the outsourcing of energy services1 to a third party (Sorrell, 2007). This third party, the energy service provider (ESP), is defined in Article 1 (24) of the EU EED as a “natural or legal person who delivers energy services or other energy efficiency improvement measures in a final customer’s facility or premises” (EP, 2012). This fairly general definition encompasses two types of actors (see Fig. 1).

ESCOs have three main characteristics (Bertoldi et al., 2006):

- ESCOs carry out energy efficiency improvement measures (e.g. installation of new energy conversion equipment), and guarantee either a particular amount of energy savings or the same level of services from energy at lower cost (performance guarantee).
- Their remuneration is tied to the achievement of the contractually

1 The European standard EN 15900:2010 provides the first common definition of an energy service as an operation to measurably improve energy efficiency, delivered on the basis of a contract (Backlund and Thollander, 2011).
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات