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Abstract

Ordinal optimization (OO) has been successfully applied to accelerate the simulation optimization process with single objective by quickly
narrowing down the search space. In this paper, we extend the OO techniques to address multi-objective simulation optimization problems by
using the concept of Pareto optimality. We call this technique the multi-objective OO (MOO). To define the good enough set and the selected
set, we introduce two performance indices based on the non-dominance relationship among the designs. Then we derive several lower bounds
for the alignment probability under various scenarios by using a Bayesian approach. Numerical experiments show that the lower bounds of the
alignment probability are valid when they are used to estimate the size of the selected set as well as the expected alignment level. Though the

lower bounds are conservative, they have great practical value in terms of narrowing down the search space.
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1. Introduction

For many large-scale discrete-event dynamic systems
(DEDS), such as traffic systems, supply chain systems, and
communication systems, it is often difficult to obtain nice form
analytical models which can be used to accurately capture the
behavior of the system. For these systems, simulation tech-
niques are commonly used to evaluate and compare the design
alternatives to identify the best design among them. However,
when the systems are complex and the number of design alter-
natives is very large or infinite, simulation can be both expen-
sive and time consuming. Therefore, it is important to improve
the simulation efficiency through optimization techniques that
can maximize the use of simulation output to evaluate and
compare the systems while the resources used are minimal.
This area of research, known as simulation optimization, has
recently become an important topic in evaluating DEDS.
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Without loss of generality, the simulation optimization
problem which minimizes the expected value of the objective
function with respect to its constraint set can be expressed as
follows:

min J(0), (1
0c®

where J(0) = E[L(0, ¢)] is the performance measure of the
problem, L(0, ¢) is the sample performance, ¢ represents the
stochastic effects in the system, 6 is a vector of discrete control-
lable factors and @ is the discrete set containing all the feasible
0. If J(0) is a scalar function, the problem is a single objective
optimization problem; whereas if it is a vector valued function,
the problem becomes a multi-objective optimization problem.
Note that, in this formulation, constraints on states and outputs
are not explicitly expressed because we consider simulation as
a black box which takes in certain inputs and provides desir-
able outputs, and therefore possible constraints on states and
outputs can be taken into account by properly defining the fea-
sible design space @ and by properly building the simulation
model. Moreover, we focus on systems with discrete control
parameters because they often pose more difficulty due to lack
of structure and huge search space. For systems with contin-
uous control parameters, they can be addressed by stochastic
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approximation, response surface methodology, and gradient-
based search methods.

The above problem can be very challenging, both analytically
and computationally, due to three kinds of difficulties summa-
rized in Lau and Ho (1997): lack of structure, huge search space
and large uncertainties. To such problems, finding an optimal
or near optimal solution can become an insurmountable task
in terms of computational burden. In light of these issues, Ho,
Sreenivas, and Vakili (1992) proposed the concept of ordinal
optimization (OO). The idea of this approach is to find a sub-
set of good enough solutions with high confidence by ordinal
comparison. The successful application of OO in solving sim-
ulation optimization problem is due to the following two tenets
(Ho, 1999):

(1) Ordinal comparison—Order converges exponentially fast
(Dai, 1997) while value converges at a rate of 1 / NI
where 7 is the size of samples used to estimate value.

(2) Goal softening—Eases the computational burden of finding
the optimum: relax the optimization goal from finding the
optimal solution for sure to satisfying with the good enough
solution with high probability.

The overall objective of OO is to effectively enhance the
power of (discrete-event) simulations (Lee, Lau, & Ho, 1999).
This is achieved by its capability of quick narrowing down of
potential solutions with high confidence during the initial phase
of a design process. The resources can then be more efficiently
allocated for detailed analysis and improvements of these po-
tential solutions. Successful applications of OO techniques have
been found in studies of single objective DEDS (Cassandras,
Dai, & Panayiotou, 1998; Deng & Ho, 1999; Gong, Ho, &
Zhai, 1999; Ho & Larson, 1995; Lee, Abernathy, & Ho, 2000).

However, for many real life DEDS, the designs are often
evaluated in terms of more than one performance measure. In
this case, the objective of formulation (1) becomes a vector,
and we are dealing with a multi-objective simulation optimiza-
tion problem. We refer to the application of OO techniques
in solving such a problem as the multi-objective OO (MOO).
The research in the area of MOO is now summarized as be-
low. Li, Lee, and Ho (1999) proposed the vector OO (VOO)
approach for a multi-objective computer network routing de-
sign problem. They used the order-based weighting and order-
based constraint approach to generate the non-inferior solutions
and define the good enough and selected sets. Li, Lee, and
Ho (2002) addressed the multi-objective problem by optimiz-
ing one performance measure and treating the rest of the per-
formance measures as order constraints. In both papers, they
transform the multi-objective problem into a single objective
problem. Zhao, Ho, and Jia (2005) proposed to integrate the
concept of Pareto optimality with the OO techniques to address
the problem. Their solution framework is based on the concept
of layer, where the selected set and good enough set are de-
fined in terms of observed and true layers. One limitation of
the above framework is that, for a certain good enough set de-
fined by more than one layer, it is not intuitive enough to know
how good a design from this set is. Moreover, designs from

different layers may be equally good as they may be dominated
by the same number of designs. In this paper, we also employ
the concept of Pareto optimality, but we present a different so-
lution framework. We define the good enough set as a set with
designs being dominated by at most a certain number of de-
signs. In addition, rather than using regression and the concept
of OPC to determine the size of the selected set, we employ a
Bayesian framework to develop lower bounds of the alignment
probability for this purpose.

In this paper, we consider a simulation optimization prob-
lem formulated as in (1), where the objective J(0), 0 € ©
to be minimized is a vector consisting of H independent per-
formance measures following continuous distributions, and the
design space @ is a discrete and finite set with a very large
number of alternatives. The problem is to consider, under the
simulation output with very high noise, how to find a subset
of good enough non-dominated solutions with high confidence
for the multi-objective simulation optimization problem. The
paper is organized as follows: in Section 2, we first introduce
the Bayesian framework applied in this study, and then provide
definitions for some basic concepts in MOO. Lower bounds of
the alignment probability in different scenarios are derived in
Section 3. Section 4 presents some results for testing the va-
lidity of the lower bounds. Lastly, we give the conclusions and
future directions in Section 5.

2. The Bayesian framework and some basic concepts in
MOO

We first establish the following notation:

n the number of designs in the design space
O,ie,n=|0|.
H  the number of performance measures
J(6) vector of true performance measures of design 6
J(0) H x | matrix representing [ indepen-
dent simulation observations for H perfor-
mance measures of design 6
W;  true performance index of design 0;
W; observed performance index of design 0;
S the selected set of the design space ©@
K number of designs in the selected set S, i.e., s = |S]
G the good enough set of the design space &
g  the number of designs by which a design
in the good enough set at most can be
dominated
the alignment level of the selected set S
and the good enough set G
Q(S) the Pareto set of set S

==~

2.1. The Bayesian framework

In this study, we derive the lower bounds of the alignment
probability within a Bayesian framework. For any design 0;,
its true performance measures J(0;) are unknown, which are
to be estimated by observing the performance measures J0)
through simulation. Assume that each unknown performance
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