Accounting for Uncertainty in Decision Analytic Models Using Rank Preserving Structural Failure Time Modeling: Application to Parametric Survival Models

Iain Bennett, MSc1,*, Noman Paracha, MSc1, Keith Abrams, PhD (Professor)2, Joshua Ray, MSc1

1F. Hoffmann-La Roche AG, Basel, Switzerland; 2University of Leicester, Leicester, UK

ABSTRACT

Objectives: Rank Preserving Structural Failure Time models are one of the most commonly used statistical methods to adjust for treatment switching in oncology clinical trials. The method is often applied in a decision analytic model without appropriately accounting for additional uncertainty when determining the allocation of health care resources. The aim of the study is to describe novel approaches to adequately account for uncertainty when using a Rank Preserving Structural Failure Time model in a decision analytic model. Methods: Using two examples, we tested and compared the performance of the novel Test-based method with the resampling bootstrap method and with the conventional approach of no adjustment. In the first example, we simulated life expectancy using a simple decision analytic model based on a hypothetical oncology trial with treatment switching. In the second example, we applied the adjustment method on published data when no individual patient data were available. Results: Mean estimates of overall and incremental life expectancy were similar across methods. However, the bootstrapped and test-based estimates consistently produced greater estimates of uncertainty compared with the estimate without any adjustment applied. Similar results were observed when using the test based approach on a published data showing that failing to adjust for uncertainty led to smaller confidence intervals. Conclusions: Both the bootstrapping and test-based approaches provide a solution to appropriately incorporate uncertainty, with the benefit that the latter can implemented by researchers in the absence of individual patient data.

The authors have indicated that they have no conflicts of interest with regard to the content of this article.

* Address correspondence to: Iain Bennett, MORSE Health Technology Assessment Group, F. Hoffmann-La Roche, Building 1 / Room OG13.5635, CH-4070 Basel, Switzerland. Tel.: +41 61 688 6149.
E-mail: iain.bennett@roche.com.

Supported by researchers at Roche, this work has not been sponsored by the (ISS) value in health. Copyright © 2017, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.
estimation of OS and replaced with methodologies that preserve randomization and are designed to address the issue of bias instead [5]. The Rank Preserving Structural Failure Time (RPSFT) model, inverse probability of censoring weights and two-stage adjustment estimation methods have all been shown to produce unbiased adjustments, provided the assumptions underpinning them hold true [6–8]. The RPSFT method, introduced by Robins and Tsiatis, provides an estimate of the OS time for the control group had treatment switching not occurred [6]. It estimates OS measured from the time of treatment switching by applying an estimate of the benefit of the experimental treatment (derived iteratively and referred to as the inverse of the acceleration factor). This method assumes that the benefit of the experimental treatment is the same whether it was received from the time of randomization or only received later as a switch treatment (referred to as the “constant treatment effect” assumption).

Given the potential confounding caused by treatment switching, it is important that appropriate adjustment methods are used for health economic analyses based on treatment switching trials and for informing HTAs. For example, in a 2012 NICE appraisal of vemurafenib for the treatment of melanoma the incremental cost-effectiveness ratio was decreased from over £75,000 per quality-adjusted life year gained to approximately £52,000 after adjusting for treatment switching [9]. This evidence suggests that failure to appropriately adjust for treatment switching has the potential to lead to misinformed HTA decision making. Although the use of adjustment methods in HTA submissions is beginning to be accepted in some countries, there is paucity of data on the role of adjustment methods in probabilistic sensitivity analysis (PSA), which is used to capture uncertainty and inform decision making in the HTA process [2,10]. PSA can be defined, in terms of a health economic modeling analysis, as the process in which “all input parameters are considered as random quantities and therefore are associated with a probability distribution that describes the state of science” [11]. The most commonly used adjustment method (RPSFT model) is known to introduce additional uncertainty when estimating (adjusted) hazard ratios (HRs) in treatment switching trials, an effect which also has the potential to influence HTA decision making [6]. When survival times are adjusted for treatment switching within decision analytic models, these adjusted HRs are rarely used explicitly. Instead, more commonly parametric survival curves are generated based on the adjusted patient survival.

The aim of the present study was to describe novel approaches to adequately adjust for uncertainty when using an RPSFT model, by (1) simulating life expectancy using a straightforward decision analytic model based on a hypothetical oncology trial with treatment switching, and (2) applying one of the approaches on published data to demonstrate the value of adjusting for uncertainty when using RPSFT models. where \(T_E \) is the observed time on experimental therapy, and \(T_C \) is defined as \(T_C = T_T - T_S \). The treatment parameter theta (\(\theta \)) is an unknown with true value \(\phi \). By assuming the latent survival times will be balanced through randomization a g-estimation procedure can be used to estimate \(\phi \). This g-estimation proceeds by proposing a candidate set of values for the unknown parameter \(\phi \) estimating the latent survival time \(U_i(\phi) \) for both arms and then comparing as randomized using a suitable test. The candidate value of \(\phi \) which leads to no difference in the comparison of the latent survival time as randomized is then taken as the estimate for \(\phi \). Using this estimate for \(\phi \), the counterfactual latent survival \(U_i \) for the control arm can then be compared with the observed survival time \(T_i \) of the experimental arm using standard statistical methods. Robins and Tsiatis noted that when considering confidence intervals (CIs) for HRs estimated from RPSFT corrected data, the P value from the test used in the g-estimation procedure should be used to create symmetric CIs [6]. This is typically done by estimating an adjusted standard error (SE\(_{\text{adj}}\)) for the treatment effect (\(\hat{\beta} \)) using equation 1, where \(X_{\text{ITT}}^2 \) is the chi-square statistic from the log rank test used for g-estimation applied to the ITT comparison.

\[
\text{SE}_{\text{adj}}(\hat{\beta}) = \frac{\hat{\beta}}{\sqrt{X_{\text{ITT}}^2}}
\] (1)

The present analysis describes an extension to this approach for use in parametric extrapolation and comparison with the alternative approach of bootstrapping with a small simulation study. The simulation study and a reanalysis of published data are used to illustrate the impact of not performing such a correction on PSA in a decision analytic model.

Estimating the Covariance Matrix Using an Adjustment Factor

The method assumes that an RPSFT model has been used to estimate counterfactual survival times for patients on standard care and assuming that treatment switching had not occurred following the approaches described in detail in the literature [6,8,12]. Following this step, the algorithm to apply the adjustment to a parametric covariance matrix is as follows:

1. Fit a parametric survival model to the observed data for the experimental arm and the counterfactual control arm survival, including a treatment effect parameter (coded to indicate being on control arm therapy relative to experimental arm, so the intercept represents the effect of experimental treatment). This is done so all the additional variance from the RPSFT method is contained in the treatment effect and is not split between the treatment effect and the intercept.
2. Derive an adjustment factor using equation 2, where SE\(_{\text{adj}}(\hat{\beta})\) is defined as with equation 1, where \(\hat{\beta} \) is the estimate of the treatment effect from the parametric model, and SE\(_{\text{obs}}(\hat{\beta})\) is the estimated standard error.

\[
F = \frac{\text{SE}_{\text{adj}}(\hat{\beta})}{\text{SE}_{\text{obs}}(\hat{\beta})}
\] (2)

3. Multiply all components of the covariance matrix that involve covariance with treatment effect by this adjustment factor. This assumes that the correlation between the parametric model parameters and treatment effect is not modified through the use of the RPSFT adjustment. This is illustrated for a Weibull model with parameters \(\gamma \) (intercept), \(\beta \) (treatment effect for control relative to experimental) and \(\gamma \) (shape) in equations 3 and 4; however, very similar derivations apply for other parametric survival models. Equation 3 shows the

Methods

In a standard application of RPSFT model proposed by Robins and Tsiatis [6], two different survival times for a patient, \(i \), are considered with notation:

- \(T_i - \) the observed survival time
- \(U_i - \) the latent survival time with no treatment

An accelerated failure time model is proposed to relate these, such as:

\[U_i(\phi) = T_C + T_E e^{\phi} \]
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات