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a b s t r a c t

This article considers risk-averse simulation optimization problems, where the risk mea-
sure is the well-known Average Value-at-Risk (also known as Conditional Value-at-Risk).
Furthermore, this article combines Taguchi’s robustness with Response Surface Methodol-
ogy (RSM), which results in a novel, robust RSM to solve such risk-averse problems. In case
the risk-averse problem is convex, the conic quadratic reformulation of the problem is pro-
vided, which can be solved very efficiently. The proposed robust RSM is applied to both an
inventory optimization problem with a service-level constraint and a call-center problem;
the results obtained for the risk-averse problem and its benchmark problem, where the risk
measure is the variance, are intuitively sound and interesting.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Robust Parameter Design (RPD) has been successfully applied to improve the quality of products since the mid 1980s,
particularly after the work of G. Taguchi in US companies; see Taguchi [30,31]. In his RPD, Taguchi focuses on physical exper-
iments, and he distinguishes between two types of variables, namely decision and environmental variables, among those
variables that contribute to the experiments. His technique consists of determining the levels of the decision variables that
reduce the sensitivity of the process to variations in the environmental variables, thus increasing the robustness of the
process.

Although Taguchi’s approach to RPD has become popular, his statistical techniques have received considerable criticism
from many statisticians including Nair [22] and Myers et al. [20]; in particular, Vining and Myers [32] show inefficiency of
Taguchi’s signal-to-noise ratios under certain conditions; i.e., regression metamodels may provide statistically more rigorous
alternatives to signal-to-noise ratios.

Classic Response Surface Methodology (RSM) focuses on the optimization of the mean of a single random response of
industrial processes; see, for example, Myers et al. [20]. This approach is known to be risk-neutral, since the mean perfor-
mance measure is optimized on average without taking into account, for example, its estimated variance. In RSM, this
risk-neutrality problem is first detected by Myers and Carter [19], who introduce the Dual Response Surface (DRS) approach.
The DRS approach is further extended by Vining and Myers [32]. Basically, in the DRS approach, two regression metamodels
are fitted for the mean and the variance of a single random response, and then the two fitted regression metamodels are
optimized simultaneously in a region of interest. Furthermore, the DRS approach uses Lagrange multipliers to explore can-
didate solutions in a manner similar to ridge regression.

The DRS approach has received a great deal of attention from researchers. Fan and Del Castillo [7] present a methodology
for building a so-called optimal region for the global optimal operating conditions to address the inherent sampling errors in
DRS. Ross et al. [28] extend the DRS such that the decision-makers’ preferences can be incorporated into the selection of the
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Lagrange multipliers. Myers et al. [21] consider a general DRS in which the performance measure is a nonnormal response.
Rajagopal et al. [24] provide a Bayesian approach to DRS. Lee and Park [17] obtain the robust optimal operating conditions
using both fully and partially observed real-life data. Lee et al. [18] construct a robust design model which is resistant to
contaminated data and to departures from the normality, and Köksoy and Yalcinoz [16] use a genetic algorithm with arith-
metic crossover to solve their DRS problem.

Classic RPD assumes physical experiments. Then, experimental designs have been devised for physical settings, but in
practical situations environmental variables are difficult, if not impossible, to control. Thus only a few of them, and with
few levels, are usually included in the design. Recently, Dellino et al. [4] extend the robust RSM in Myers et al. [20] in many
directions including the use of simulation outputs. This is an important contribution since simulation experiments enable
the exploration of many values for the decision and environmental variables, and many combinations of these values. There-
fore, the major purpose of this article is to contribute to the robust RSM methodology in Dellino et al. [4] in the following
three directions:

� Dellino et al. [4] have a mean-risk approach where they consider standard deviation as their risk measure. The standard
deviation (and variance), however, considers both the upper and lower deviations from the mean, whereas in many cases
only one-sided deviation is important; see Yin et al. [34]. Hence, this article replaces the standard deviation by the Average
Value-at-Risk (also known as the Conditional Value-at-Risk) from the financial engineering literature, which is known to
consider only one-sided deviations. Furthermore, variance is considered as the risk measure of the benchmark problem.
� Dellino et al. [4] solve their risk-averse problem through MATLAB’s fmincon function without investigating its convexity.

This article, however, provides a very practical way to check for the convexity. Furthermore, in case the risk-averse prob-
lem is found to be convex, it provides a conic quadratic reformulation, which can then be solved very efficiently through,
for example, CVX (a free-of-charge, structured convex programming solver).
� Dellino et al. [4] consider deterministic simulation whereas this article considers discrete-event dynamic (and hence sto-

chastic) simulation. The use of stochastic simulation enables to observe many times the outputs of the multiple responses
at the same input combinations through replicates, which is not meaningful for deterministic simulation. This is impor-
tant since the average outputs of the multiple responses follow asymptotically a multivariate normal distribution because
of the classic Central Limit Theorem, provided that the multiple responses have finite variances.

The proposed robust RSM is applied to the problem with the Average Value-at-Risk as its risk measure and the benchmark
problem with variance as its risk measure on two classic cases, namely an (s, S) inventory optimization case with a service-
level constraint and a call-center case, which are originally investigated by Bashyam and Fu [2] and Kelton et al. [11],
respectively.

The remainder of this article is organized as follows. Section 2 introduces the problem formulation which considers Aver-
age Value-at-Risk as its risk measure. Section 3 presents the steps of the robust RSM; the emphasis in this section is on the
optimization step where the benchmark problem and the conic quadratic reformulation are introduced. Section 4 gives
numerical results of the risk-averse problem with the Average Value-at-Risk and its benchmark on the inventory optimiza-
tion and the call-center optimization. Section 5 gives conclusions and possible future research directions.

2. The risk-averse problem formulation

This article considers the following optimization problem:

minimize
d2Rk

E½f0ðd; e;xÞ�

subject to E½fjðd; e;xÞ� 6 aj j ¼ 1; . . . ; r
ð1Þ

where E denotes the expectation operator, the fi (i = 0, . . . ,r) are r + 1 simulation outputs (responses), d = (d1, . . . ,dk)T is the
k � 1 vector of decision variables, e = (e1, . . . ,eh)T is the h � 1 vector of environmental variables, x is the simulation’s seed
vector, and the aj are r deterministic threshold levels. The multivariate distribution of e is assumed to be known (i.e., esti-
mated from historical data) with mean vector le—which is not necessarily a zero-vector—and covariance matrix Re—which
is not necessarily a scaled identity matrix.

The following assumptions, which are common in black-box simulation optimization, are made for the problem in (1): (i)
The fi are continuous and continuously differentiable with respect to d for almost all x in the interior of the feasible region
defined by the constraints. (ii) The mathematical formulations of the fi are unknown to the decision-maker; at a given d, e,
and x, only their evaluations can be obtained through a simulation program. (iii) The expectations and the variances of the fi

are finite.
The drawback of the stochastic optimization problem in (1) is that it minimizes the random response f0 on average, which

is usually called a risk-neutral approach. A classic approach that takes risk into account is the expected utility theory, which
minimizes E½uðf0ðd; e;xÞÞ� where u is assumed to be a convex and nondecreasing disutility function. The obvious difficulty
with this approach is to elicit an appropriate u.
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