A novel model to account for the heterogeneous nucleation mechanism of α-Mg refined with Al4C3 in Mg-Al alloy

Aimin Zhang, Zhiwei Zhao, Guili Yin, Cheng Lin*

College of Material Science and Engineering, Liaoning University of Technology, Jinzhou, Liaoning 121001, China

A R T I C L E I N F O

Article history:
Received 6 July 2017
Received in revised form 19 August 2017
Accepted 21 August 2017

Keywords:
Heterogeneous nucleation mechanism
Magnesium alloy
Crystal structure
Electronic band structure

A B S T R A C T

To explore the heterogeneous nucleation mechanism of Mg-Al alloy refined by Al4C3, the valence electron structure and cohesive energy of Al4C3 crystal were calculated using the empirical electron theory of solids and molecules. A novel model to account for heterogeneous nucleation process of α-Mg on Al4C3 is described. The weak bonds exist in the surface of Al4C3 might leads to the replacement of atoms in Al4C3 surface by Mg atoms in melt, which ultimately result in easily stacking of Mg atoms on the newly formed surface of Al4C3. This model also indicates that Mg-Al atom cluster preferentially occupies the atom vacancies on Al4C3 surface in comparison to Mg-Mg atom cluster, which can decrease the refining efficiency of Al4C3 in high Al containing magnesium alloys.

1. Introduction

Grain refinement of as-cast Mg-Al serial alloys is contributed to improving the mechanical properties and broadening its applied range. However, being lack of understanding to the grain refinement mechanism, a reliable, efficient and environment-friendly commercial grain refiner is still not successfully developed for Mg-Al alloys [1–3]. Since Davis originally found the adding of C containing agent can refine Mg-Al alloy in 1945 [4], considerable efforts had been carried out to elucidate the grain refinement mechanisms of carbon inoculation over half-centuries. The Al4C3 compounds was first proposed as a nucleating substrate for α-Mg in 1948, then this hypothesis on the heterogeneous nucleation of Al4C3 was supported by many investigators in terms of crystallographic characteristic [5–11], but there seems no direct convincing experimental data showing the existence of Al4C3 particle in Mg-Al alloy. Although Al4C3, of which lattice misfit with α-Mg is smaller than that of Al4C2, appears to be a more potent nucleation agent for α-Mg than Al4C2 [7], it is thermodynamically impossible to form Al-C-O compounds in Mg-Al melt [11]. In addition to Al4C3 and Al4C2, other C-containing compounds were also identified as a nucleating substrate. Huang [12] exactly found the existence of the ternary carbide Al4C2Mg in Mg-Al alloy inoculated by SiC, and the lattice constant of Al4C2Mg also has small misfit in comparison with that of primary Mg phase. Nonetheless, it is worthy to note in Huang’s investigation that the adding amounts of SiC are large enough, but it is probably still questionable whether Al4C2Mg nuclei can be formed or not under the condition of small amount of SiC, i.e. low C/Al ratio. Hence, the hypothesis of Al4C3 heterogeneous nucleation to date is still the commonly accepted grain refining mechanism of C treatment method.

The popular theory of heterogeneous nucleation is the lattice matching between substrate and matrix. The lattice misfit between Al4C3 and primary Mg is about 4%, but it is not certain to become potent nuclei for other particles, such as TiC, TiB2 and AlB2 being disable for refining aluminum [13–15], in spite of satisfying the condition of atomic arrangements misfit. Inversely, it also has been experimentally demonstrated that the particle with large lattice misfit to matrix can act as nucleating substrate [16]. Thus, it seems that lattice misfit criterion is not sufficient to the mechanism description of heterogeneous nucleation. Alternatively, the interfacial energy between the nucleating particle and matrix is considered as a direct factor to determine the occurrence of heterogeneous nucleation, which is only partly related to lattice misfit of the two phase. Li [17] and Wang [18] used density functional theory (DFT) to calculate the interfacial energy of Mg/Al4C3, Mg/Al4C2Mg, and the results indicate that both interfacial energy are lower to that of between α-Mg and magnesium melts. Nevertheless, these works still cannot explain the effects of alloying component on the refining efficiency of heterogeneous particles, and the affecting mechanism needs to be further explored.

At present, all the mechanism about heterogeneous nucleation have focused on the nucleating criterion, none have thought the initial process of heterogeneous nucleation, i.e. the atoms interactions between nucleating particle and matrix liquid. But due to the
limitation on the experimental facilities, there is no direct evidence at atomic level for exploring the atom mechanism of Al₄C₃ heterogeneous nucleation. Therefore, the present study used the empirical electron theory (EET) of solids and molecules to calculate the valence electron structure of Al₄C₃. Based on analysis of calculation results, a new model of α-Mg heterogeneously nucleating on Al₄C₃ was proposed to clarify the essence of heterogeneous nucleation insightfully by paying specific attention to the atom interactions between the liquid Mg-Al and the Al₄C₃ particle.

2. Calculation method

EET, established by Yu in 1978 [19], is based on Pauling’s valence bond theory and Hume-Rothery’s electron concentration theory. After decades of continuous efforts, EET was better improved to deal with the two main problems of multi-solutions and calculation accuracy by using equal probability principle [20] and the self-consistent bond length difference (SCBLD) method [21,22], respectively. Now the developed EET is widely used in many fields such as solid solutions, compounds, mechanical properties, strengthening mechanisms and phase transformations [23–28]. In this paper, it is therefore possible to calculate the bonds energy and cohesive energy for Al₄C₃ using EET.

2.1. Calculations of valence electron structure (VES) of Al₄C₃

The VES in EET usually includes the covalent bonds formed by atoms, the electron distribution on covalent bonds, and the atomic states. Fig. 1 shows the VES analysis model. There are three models used in this paper, initial pure Al₄C₃(Fig. 1(a)), Al₄C₃ doped Mg atom i.e. C1 atom on Al₄C₃ surface replaced by Mg (Fig. 1(b)), Al₄C₃ doped Mg-Al atom cluster. It is noted that the position of alloy atom Al in Mg-Al cluster is random and indeterminate. Therefore, in the light of the calculation models supposed in our previous investigations [25,26], we consider that a kind of mixing atom that is composed of (1 – x) Mg and xAl atoms (x = 3, 6, 9, at.%) occupies the lattice points of C1 atoms, as shown in Fig. 1(c).

The VES parameters for Al₄C₃, Al₄C₂-Mg, and Al₄C₂-(Mg-xAl) can be calculated with the SCBLD method which is developed from the bond length difference (BLD) method [21,22] in EET, respectively. Taken pure Al₄C₃ structure unit as an example, the detail calculation steps of the VES of Al₄C₃ are given as follows.

Al₄C₃ has the non-close packed hexagonal lattice and its lattice constants are a = b = 0.333 nm, c = 2.489 nm, each unit cell contains 9 carbon atoms and 12 aluminum atoms, the atom position are listed in Table 1.

In EET, the head and tail states of C are given as

From the above hybridization states, we can obtain l = 2, m = 2, n = 0, s = 0; l’ = 1, m’ = 3, n’ = 0, s’ = 1, R(1)h = 0.0763 nm, R(1)t = 0.0763 nm.

For Al element, the hybridization two-states are given as

For Mg element, the hybridization two-states are given as

![Fig. 1. VES analysis models of hcp-structured Al₄C₃ (a) Al₄C₃ structure unit; (b) Al₄C₃ doped Mg structure unit; (c) Al₄C₃-doped (Mg-xAl) structure unit.](image-url)
دریافت فوری متن کامل مقاله

<table>
<thead>
<tr>
<th>سیستم هوشمند رهگیری سفارشات</th>
</tr>
</thead>
<tbody>
<tr>
<td>امکان دانلود نسخه تمام متن مقالات انگلیسی</td>
</tr>
<tr>
<td>امکان دانلود نسخه ترجمه شده مقالات</td>
</tr>
<tr>
<td>پذیرش سفارش ترجمه تخصصی</td>
</tr>
<tr>
<td>امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله</td>
</tr>
<tr>
<td>امکان دانلود رایگان 2 صفحه اول هر مقاله</td>
</tr>
<tr>
<td>امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب</td>
</tr>
<tr>
<td>دانلود فوری مقاله پس از پرداخت آنلاین</td>
</tr>
<tr>
<td>پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات</td>
</tr>
</tbody>
</table>