Exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with a Multi Effect Distillation-Thermal Vapour Compression desalination plant

P. Catrini, A. Cipollina, G. Micale, A. Piacentino, A. Tamburini

ABSTRACT

In this paper an exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with Multi Effect Distillation-Thermal Vapour Compression desalination plant is performed; the goal of the study is to show how these methodologies provide a rational criterion to allocate production costs on electricity and freshwater in such a dual purpose system. After a brief overview on the methodology and a description of reference plant, exergy analysis is carried out to calculate exergy flows and exergy efficiencies at component level. A detailed description of the adopted thermoeconomic model is given. In a first scenario, cost accounting is performed assuming that the concentrated brine is disposed back to sea, thus being its exergy content definitively wasted; furthermore, a sensitivity analysis is carried out in order to assess the changes in the unit cost of electricity and freshwater with several design and operation parameters. In a second scenario, conversely, part of brine exergy is used in a Reverse Electrodialysis unit to produce further electricity. In both cases results show that high unit costs are obtained for the material streams or energy flows which involve major exergy destruction along their production process, particularly freshwater in the former configuration and Reverse Electrodialysis electric output in the latter one.

1. Introduction

Fresh water consumption has been continuously increasing along the last decades, due to different factors such as population growth, improvement of living standards and economic development [1]. Nowadays seawater desalination technologies are frequently adopted in countries experiencing potable water shortage. Among the available desalination technologies, reverse osmosis is the most widely adopted, accounting for almost 50% of the installed worldwide desalination capacity; conversely, the remaining capacity is shared between the different thermal desalination processes [2]. One of the main barriers to the spread of Thermal Desalination plants lies in their high-energy consumption per m³ of freshwater product; for this reason, the current researches have been paying growing attention to the design dual purpose systems for simultaneous production of electricity and fresh water. Several studies may be found in literature, that are focused on this topic and discuss the economic feasibility of different technological solutions. In [3] the potential integration of renewable sources and either thermal or mechanical desalination processes is discussed, focusing the attention on solar stills, multi-stage flash, multiple-effects boiling, reverse osmosis and electrodialysis. An analysis of the potential for highly integrated solar energy systems to supply the requests from isolated communities is presented in [4]. In [5] the attractiveness of Concentrating Solar Power schemes integrated with thermal or mechanical desalination systems was investigated, in terms of levelized water cost and for possible application in Middle East and North Africa countries. Also, geothermal energy represents a possible source to drive water desalination units, as testified by the comprehensive review of technologies presented in [6].

Another solution could be represented by coupling thermal desalination processes with fossil-fuel or nuclear power plants [7]; with regards to fossil fuel-based plant, further opportunities could arise from the possibility of Combined Heat and Power (CHP) plants to be supported, according to the current legislative framework at European Union level, by incentive mechanisms pro-

* Corresponding author.
E-mail addresses: catrinipietro@gmail.com (P. Catrini), andrea.cipollina@unipa.it (A. Cipollina), giorgio.micale@unipa.it (G. Micale), antonio.piacentino@unipa.it, piacentino@dream.unipa.it (A. Piacentino), alessandro.tamburini@unipa.it (A. Tamburini).

http://dx.doi.org/10.1016/j.enconman.2017.04.032
0196-8904/© 2017 Elsevier Ltd. All rights reserved.

vided by the different member states. The technical feasibility of small-medium scale integrated schemes including cogeneration and thermal desalination units has been analysed in a recent paper by Salimi and Amidpour [8], where thermodynamic modelling and economic assessment for a reciprocate engine coupled to a multi-output desalination system has been reported. In the same context, the technical feasibility of a CHP-MED-TVC plant presented in [10], in which the potential of thermoeconomic cost accounting is investigated, as an instrument to provide a rational criterion to allocate the costs of the consumed resources, either in the form of natural gas and capital investment, on the produced freshwater and electricity. In fact, when dealing with single-output systems, all the sustained costs are easily allocated on the unique product; conversely, when multi-output systems are concerned, as in the case of polygeneration systems [11], it is worthwhile questioning about the contribution of each product on the total production cost. Cost allocation also provides a basis for rational pricing of the different outputs.

In order to exploit the potential of dual purpose systems, in [10] a condensing cycle with steam extraction was proposed as an efficient CHP retrofit solution for an existing Multiple Effect Distillation with Thermal Vapour Compression (MED-TVC); the cited paper proposed a sensitivity analysis of design and operation parameters, in order to assess whether or not the produced electricity was eligible for the “high efficiency cogeneration” assessment, according to the current legislative framework.

Referring to the same CHP-MED-TVC plant presented in [10], in the present paper the potential of thermoeconomic cost accounting is investigated, as an instrument to provide a rational criterion to allocate the costs of the consumed resources, either in the form of natural gas and capital investment, on the produced freshwater and electricity. In fact, when dealing with single-output systems, all the sustained costs are easily allocated on the unique product; conversely, when multi-output systems are concerned, as in the case of polygeneration systems [11], it is worthwhile questioning about the contribution of each product on the total production cost. Cost allocation also provides a basis for rational pricing of the different outputs.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات