Accepted Manuscript

Optimized design and operation strategy of a Ca-Cu chemical looping process for hydrogen production

J.R. Fernández, J.C. Abanades

PII: S0009-2509(17)30205-1
DOI: http://dx.doi.org/10.1016/j.ces.2017.03.039
Reference: CES 13507

To appear in: Chemical Engineering Science

Received Date: 30 November 2016
Revised Date: 13 March 2017
Accepted Date: 15 March 2017

Please cite this article as: J.R. Fernández, J.C. Abanades, Optimized design and operation strategy of a Ca-Cu chemical looping process for hydrogen production, Chemical Engineering Science (2017), doi: http://dx.doi.org/10.1016/j.ces.2017.03.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Optimized design and operation strategy of a Ca-Cu chemical looping process for hydrogen production

J.R. Fernández*, J.C. Abanades

Spanish Research Council, INCAR-CSIC, C/ Francisco Pintado Fe, 26, 33011, Oviedo, Spain. Phone number: +34 985 11 90 90
*jramon@incar.csic.es

Abstract

This work describes the performance of an improved Ca-Cu looping process designed to produce H₂ and/or power from natural gas while generating CO₂ suitable for reuse and/or permanent storage. The core of the process relies on an arrangement whereby fixed-bed reactors perform adiabatically. A sequence of five stages: sorption enhanced reforming (SER), Cu oxidation, solid/gas heat exchange, CuO reduction/CaCO₃ calcination and steam methane reforming (SMR) is used. A continuous flow rate of O₂-depleted gas is produced at a sufficiently high pressure and high temperature to drive a gas turbine for the generation of power. The new process design allows the number of reactors to be reduced from the 15 originally proposed in the original scheme to only five. The energy requirements for the reduction/calcination step can be reduced by using the PSA off-gas from the H₂ purification step and the syngas generated in a SMR stage. This also allows a reduction of the Cu/Ca molar ratio in the bed to a value of around 2. A dynamic reactor model partially validated in a previous work was used to simulate in detail a complete cycle of the Ca-Cu looping process under large-scale conditions. The simulations show that the progression of the reaction and heat exchange fronts can be regulated by the partial recirculation of the product gases. A process design for a base case with a reference output of 30,000 Nm³/h of pure H₂ (88.5 MWth), which is the typical production of fired tubular reformers installed in refineries, shows that reactors 6 m long with an inner diameter of 3 m would be sufficient to carry out the entire process, assuming a cycle duration of 15 minutes and a maximum drop in inlet pressure of 10% per stage. A hydrogen production efficiency of 77% is achievable, which is 6 net points above the efficiency of benchmarks based on fired tubular reformers that use amines (MDEA) to remove the CO₂. A CO₂ capture efficiency of about 95% is obtained, which is 10 net points higher than the values typically estimated for reference H₂ plants that use MDEA absorption.

Keywords: Hydrogen production; CO₂ capture; sorption enhanced reforming; calcium looping; chemical looping; fixed bed.

1. Introduction

Carbon capture and storage (CCS) remains a promising alternative for drastically reducing CO₂ emissions from industries powered by fossil fuels or biomass (IPCC, 2014). Precombustion capture systems offer great theoretical advantages for new CCS systems in power and industry, as H₂ provides the flexibility and energy density of fossil fuels but has a potentially low carbon footprint (Boot-Handford et al., 2014). Nowadays, hydrogen is almost entirely used as feedstock in refining and chemical
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات