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a b s t r a c t

The classical portfolio problem is a problem of distributing capital to a set of securities. By generalizing
the set of securities to a set of investment strategies (or security-rule pairs), this study proposes an
investment strategy portfolio problem, which becomes a problem of distributing capital to a set of invest-
ment strategies. Since the investment strategy portfolio problem can be formulated as a combination
optimization problem, a new combination genetic algorithm is proposed for solving the new investment
strategy portfolio problem. Experimental results show that the idea of investment strategy portfolios is
feasible and the combination genetic algorithm is effective on the investment strategy portfolio problem.

� 2008 Elsevier Ltd All rights reserved.

1. Introduction

The classical portfolio problem is a problem of distributing cap-
ital to a set of securities (Gondzio & Grothey, 2007; Ince & Trafalis,
2006; Markowitz & Arnott, 1952; Wu & Chang, 2007). By general-
izing the set of securities to a set of investment strategies (or secu-
rity-rule pairs), this study proposes an investment strategy
portfolio problem, which becomes a problem of distributing capital
to a set of investment strategies. The classical portfolio problem
can be viewed a special case of the new investment strategy port-
folio problem with buy-and-hold as the only trading rule.

Both the investment strategy portfolio problem and the classi-
cal portfolio problem can be formulated as combination optimiza-
tion problems. Therefore, a new combination genetic algorithm
(CGA) is proposed for solving the combination optimization prob-
lem in general, and the new investment strategy portfolio problem
in particular.

Statistical test result indicates that the performance of our CGA
is significantly better than that of uniform allocation. Experimental
results show that the idea of investment strategy portfolios is fea-
sible and the combination genetic algorithm is effective on the
investment strategy portfolio problem.

The rest of this paper is organized as follows. Section 2 reviews
the classical portfolio problem and genetic algorithms. Section 3
describes the investment strategy portfolio problem and our solu-
tion method, the combination genetic algorithm. Section 4 pre-

sents the results of our experiments. Section 5 gives the
conclusions and future directions.

2. Background

2.1. Classical portfolio optimization problem

The classical portfolio optimization problem can be formulated
as follows:

max a
X

i

xiri � ð1� aÞ
X

ij

xixjrij

subject to
Xn

i¼0

xi ¼ 1; 0 6 xi 6 1; xi 2 R;
ð1Þ

where a is a real constant between 0 & 1, xi is the proportion (be-
tween 0 and 1) of capital invested in instrument i, ri is the expected
return rate of instrument i and r2

ij is the covariance of ri and rj. The
objective is to find the optimal portfolio with maximum return and/
or minimum risk.

Traditional approach to this portfolio problem is Markowitz’s
mean–variance analysis which uses the Lagrange multiplier meth-
od to find the optimal static portfolio (Kim & Markowitz, 1989;
Markowitz & Arnott, 1952).

2.2. Genetic algorithms on portfolio optimization problem

Genetic algorithms (GA) were proposed by Holland in 1975
from Darwin’s theory of evolution, i.e., survival of the fittest
(Darwin, 1859; Holland, 1975). Genetic algorithms uses an evolu-
tionary process resulting in a fittest solution to solve a problem.
The evolutionary process consists of several genetic operators:
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selection, crossover and mutation (Bäck, Fogel, & Michalewicz,
2000a, 2000b; De Jong, 2002; Goldberg, 1989; Mitchell, 1996; Srin-
ivas & Patnaik, 1994).

Genetic algorithms are computationally simple and powerful.
Genetic algorithms are very good tool for optimization problems
since they make no restrictive assumptions about the solution
space.

To solve a problem with genetic algorithms, an encoding mech-
anism must first be designed to represent each solution as a chro-
mosome, e.g., a binary string. A fitness function is also required to
measure the goodness of a chromosome. Genetic algorithms search
the solution space using a population which is simply a set of chro-
mosomes. During each generation, the three genetic operators:
selection, crossover and mutation, are applied to the population
several times to form a new population. Selection picks 2 chromo-
somes according to their fitness: a fitter chromosome has a higher
probability of being selected. Crossover recombines the 2 selected
chromosomes to form new offspring with a crossover rate. Muta-
tion randomly alters each position in each offspring with a small
mutation rate. New population is then generated by replacing
some chromosomes with new offspring. This process is repeated
until some termination condition, e.g., the number of generations,
is reached. Fig. 1 shows the pseudo code of the basic genetic algo-
rithm. When the number of genetic applications (k) is half the pop-
ulation size (n=2), the GA is called generational GA; when k < n=2,
it is called steady-state GA.

The advantage of GAs is in their parallelism. GA searches a solu-
tion space using a population of individuals so that they are less
likely to get stuck in local optimums. This is achieved with a cost,
i.e., the computational time. GAs can be slower than other meth-
ods. However, the longer run time of GAs can be shortened by ter-
minating the evolution earlier to get a satisfactory solution.

Genetic algorithms have been applied to various domains over
the years (Beasley, 2000; Oh, Kim, & Min, 2005; Oh, Kim, Min, &
Lee, 2006). Financial applications of genetic algorithms are starting
to show promising results. Bauer used genetic algorithms to gener-
ate trading rules which are Boolean expressions with 3 of the 10
allowed time series (Bauer, 1994). Colin applied genetic algorithms
to find the lengths in the moving average crossover strategy (Colin,
1994). Deboeck studied methods of using genetic algorithms to
train a neural network trading system (Deboeck, 1994).

The easiest way to use GAs on the portfolio problem is to en-
code each weight xi as a non-negative integer or floating number.
Standard genetic operators can then be applied as usual. To enforce
the

Pn
i¼0xi ¼ 1 constraint, normalization of each xi by dividing their

sum
Pn

i¼0xi is usually required (Xia, Liu, Wang, & Lai, 2000).
One problem with this encoding method is that many chromo-

somes decode into the same portfolio. This multiplies the GA’s
search space and makes GA less efficient in finding the optimal
portfolio. Another problem with normalization is that similar chro-
mosomes may decode into very different portfolios which makes it

more difficult for GA to produce better chromosomes from good
chromosomes.

3. Investment strategy portfolio problem and combination
genetic algorithms

3.1. Investment strategy portfolio problem

The classical portfolio problem is a problem of distributing cap-
ital to a set of securities. By generalizing the set of securities to a
set of investment strategies (or security-rule pairs), this study pro-
poses an investment strategy portfolio problem, which becomes a
problem of distributing capital to a set of investment strategies.

An investment strategy is a security-rule pair. A (trading) rule
consists of a buy condition and a sell condition which are used
to, respectively, determine the buying time and selling time for
the target security. The buy/sell conditions can be based on various
factors.

The classical portfolio problem can then be viewed a special
case of the new investment strategy portfolio problem with buy-
and-hold as the only trading rule. Other variants of the investment
strategy portfolio problem include multiple securities with a single
trading rule, a single security with multiple trading rules, and mul-
tiple securities with multiple trading rules.

3.2. Combination genetic algorithms

The real number model of portfolio problem in (1) can be
approximated by the following integer model with a large m to
achieve the desired precision.

max a
X

i

wi

m
� ri � ð1� aÞ

X

ij

wi

m
�wj

m
� rij

subject to
Xn

i¼0

wi ¼ m; 0 6 wi 6 m; wi 2 Z;
ð2Þ

where m is a large positive integer, wi=m approximates the xi in (1)
and the constraints become

Pn
i¼0wi ¼ m, 0 6 wi 6 m, & wi 2 Z.

This turns the portfolio optimization problem into the combination
optimization problem and reduces the search space to non-negative
integers such that

Pn
i¼0wi ¼ m, whose size is Cnþm

m .
There are four common types of combinatorial problems:

arrangement, permutation, combination, and combination with
repetition. The sizes of their solution spaces are listed below.

Arrangement: There are nr ways of ordering r of n distinct objects
with repetitions.

Permutation: There are Pðn; rÞ ¼ n!=ðn� rÞ! ways of ordering r of
n distinct objects without repetitions.

Combination: There are Cðn; rÞ ¼ n!=r!ðn� rÞ! ways of selecting r
of n distinct objects without repetitions.

Fig. 1. The basic genetic algorithm.
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