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a b s t r a c t

Asset liability management is a key aspect of the operation of all financial institutions. In this endeavor,
asset allocation is considered the most important element of investment management. Asset allocation
strategies may be static, and as such are usually assessed under asset models of various degrees of
complexity and sophistication. In recent years attention has turned to dynamic strategies, which promise
to control risk more effectively.

In this paper we present a new class of dynamic asset strategy, which respond to actual events. Hence
they are referred to as ‘reactive’ strategies. They cannot be characterized as a series of specific asset
allocations over time, but comprise rules for determining such allocations as the world evolves. Though
they depend on how asset returns and other financial variables aremodeled, they are otherwise objective
in nature.

The resulting strategies are optimal, in the sense that they can be shown to outperform all other
strategies of their type when no asset allocation constraints are imposed. Where such constraints are
imposed, the strategies may be demonstrated to be almost optimal, and dramatically more effective than
static strategies.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Asset allocation strategies are generally of three types:

(a) Fixed asset allocations through time (typically 70% equity and
30% debt for long term investors, such as pension funds). This
allocation is reviewed infrequently.

(b) Asset allocations that evolve over time according to a fixed
and pre-determined schedule. Examples are so-called ‘lifecy-
cle’ funds for superannuation investors. These have a fixed
horizon and generally become more defensive as an investor
approaches retirement.

(c) Rebalancing rules, under which the allocation at any future
time is not pre-determined, but varies according to the actual
investment experience up to that time.

Strategies (a) and (b) have been the most commonly used in
practice. However in recent years, attention has focused on (c),
which are potentially effective in controlling risk.

Generally an investment portfolio can drift from its target asset
allocation, acquiring risk and return characteristics that may be in-
consistent with an investor’s goals and preferences. A rebalancing
strategy addresses this situation by formalizing guidelines about
how frequently the portfolio should be monitored, how far an as-
set allocation can deviate from its target before it is rebalanced, and
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whether periodic rebalancing should restore a portfolio to its target
or to some other allocation. The question is: ‘is there is an optimal
rebalancing strategy in any sense?’. This is clearly a multi-period
issue, formulated in either discrete or continuous time.

There is a wealth of literature on how risk factors and asset
classes can be modeled under approach (a). We mention only
a few of them here. Martinelli (2006) provides a formal but
simplified model of assets and liabilities, identifying factors which
are common to them both. Using stochastic optimization, this
framework leads to appropriate asset allocations which support
the investor’s funding objectives.

Dempster et al. (2009) adopt an econometric model covering a
variety of economic, financial and asset return variables, with com-
plex interactions between them. These are more than adequate in
capturing the effect of the risk factors that drive most liabilities in
practice. When coupled with investor objectives as to funding lev-
els, an optimal asset allocation strategy may be formulated by dy-
namic stochastic programming, i.e. by optimization over simulated
outcomes.

Dhaene et al. (2005) avoid the use of simulation by approxi-
mating the copula of the dependent variables with a comonotonic
copula. They do so under a lognormal framework for asset re-
turns, employing a comonotonic copula to derive upper and lower
bounds for the distribution of accumulated outcomes. More re-
cently,Van Weert et al. (2010) extends these results to situations
where cash flows are unrestricted in sign, thereby allowing savings
towards pension benefits to be investigated.
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More recently, Li et al. (2006) also employ optimization to
derive a closed form solution for the constant rebalanced portfolio
(CRP—i.e. a static asset allocation) where the risk measure is based
on a tail-VaR.

One of the earliest implementations of type (b) was due to
Cariño et al. (2006). This study is focused on maximizing terminal
outcomes for an income-paying insurance product subject to a host
of regulatory constraints. The solutions are reached via stochastic
dynamic programming.

More theoretical approaches are employed in Gerber and Shiu
(2000) to obtain exact solutions under a two-asset model, with
various forms of the utility of terminal outcomes. Munk (2008)
provides a comprehensive review of dynamic asset strategies
under various types of asset model and investor objectives. Cairns
et al. (2006) provide a lifetime approach to saving for providing
retirement income. Bruynel (2005) applies these techniques to a
variety of situations, using a simple Markovitz model for asset
returns. Most recently Huang and Lee (2010) apply this technique
to themanagement of a life insurance portfoliowhere asset returns
are subject to an autoregressive process.

The asset strategies of type (b) are dynamic in the sense that
they change over time. These naturally lead to ‘lifecycle’ or ‘target
date’ savings products, where the asset allocation evolves over the
lifetime of the investor. However they do so in a pre-determined
way, and that might explain the limited popularity they have
enjoyed in practice in some countries.

Basu and Drew (2009) contest the viability of lifecycle funds
which become more defensive towards the end of the investor’s
horizon. They show empirically that this defensiveness is costly
in terms of overall return, especially where funding is weighted
towards the end of the investor’s horizon. More recently they
suggest a dynamic strategy (Basu et al., 2011), where theweighting
to growth assets depends on the actual performance relative to a
target. Their suggestion is thus for a strategy of type (c).

The alternative approach under (c) is responsive to how the
asset strategy performs in practice. This may allay some concerns
of the investor that he is locked into an inflexible, and possibly
destructive, path.

Seth (2002) takes up the issue of dynamic rebalancing to a target
asset allocation. As a result of transaction costs, it is more effective
to establish an asset allocation range for rebalancing, rather than
rebalancing precisely to the target. Tokat andWicas (2007) suggest
that the frequency of rebalancing should depend on the direction
of markets as well as on the target allocation adopted.

Bone and Goddard (2009) take up this theme in the context of
funding pension liabilities. A contrarian rule is one of weighting to
growth assets when pension funding is poor, and vice versa. Under
the contrarian rebalancing strategy, a target performancemight be
set as, say, 3% pa. above annual inflation. Any surplus relative to
the target will be invested into bonds, while any deficiency will
be invested into equities. This may be contrasted with the CRP
approach, where a portfolio is rebalanced to a predetermined asset
allocation. They demonstrate that both on a historical, as well as
on a prospective, basis this type of strategy can be superior to a
static CRP of type (a). It is certainly superior to one of a ‘casino’ type,
where more is allocated to growth assets when pension funding is
favorable.

The apparent success of type (c) strategies is intriguing. In this
paper we demonstrate that this success is not accidental, under a
variety of conditions. We specifically derive the optimality crite-
rion, and illustrate its outcomes, even in the presence of complex
regulatory constraints. This is provided in the generic context of an
investor with deterministic cash flows, but may be generalized to
institutional investors with uncertain liabilities. Nonetheless, the
need for an appropriate assetmodel, and identification of appropri-
ate investor objectives, remain fundamental to all these problems.

1.1. Background

An investor has at time t accumulated wealth At as a result of
previous investment returns. If the return for the period [t, t + 1]
is denoted rt and the cash flow at the end of this period is Ct+1, then
the accumulations are governed by the simple relationship
At+1 = (1 + rt) At + Ct+1. (1)
Without loss of generality, we can take A0 = 1. Note that an initial
cash flow C0 is then not needed.

As a simplifying assumption, the returns rt are taken to be
independent between periods and are derived from a portfolio
with mean return µt and volatility σt = σ (µt). This assumption
will be relaxed in later sections of this paper, but note that no
assumptions are made about the shape of the return distribution.
Here the function σ (·) describes the efficient frontier for a given
set ofm asset classes and asset assumptions in accordancewith the
conventional Markovitz framework.

Following Bruynel (2005), an investment strategy is defined as a
sequence M = {µt |t = 0, 1, . . . , n − 1} of expected returns until
some horizon t = n, which specify a set of portfolios. We allow
µt = µt (At) to depend only on accumulated wealth to date, so
that the strategy is of type (c). This is reasonable, given that asset
returns are independent between periods, and suggests that the
strategy is path-independent in the sense of Cox and Leland (2000).
Again this assumption is relaxed later in this paper.

The investor’s optimization problem is therefore to optimize
terminal outcomes for An by specifying the form of the expected
returns µt (At). Here we take optimization to mean finding the
minimum variance var (An), or equivalently E


A2
n


, for a required

expectation of terminal wealth E (An). For convenience we denote
the standard deviation of An as sd (An) =

√
var (An) .

Detailed proofs and other results are provided in the Appendix.

2. Efficient frontier

Suppose there are m asset classes, with an expected return
vector γ and covariancematrix6. Formallywe adopt the following
process for the returns rt :
rt = γ + et
where the innovations et are independent and identically dis-
tributed (iid) with covariance matrix 6. We do not need, however,
to specify the precise distribution. As in practice we do not observe
any asset that is perfectly riskless,we take6 to be positive-definite.

For a weightingw to the asset classes, the portfolio return µ =

γTw and portfolio variance is σ 2
= wT6w. In practice the weights

w are subject to linear constraints of the form aTi w ≤ bi. We then
have the following result, which is proved in the Appendix.

Proposition 1. Suppose the constraints ATw = b are binding on the
portfolio weights w for some region of the efficient frontier. Then the
efficient frontier σ = σ (µ) is quadratic, with the general form

σ 2
=


µ
1
b

T

Q


µ
1
b



for Q =

RT6−1R

−1 with R =

γ j A


and j = [1, 1 . . . 1]T .

Moreover the efficient frontier σ (µ), allowing for different con-
straints binding for different regions, is in general piecewise quadratic
and
• is defined over a closed interval in µ, say I = [µmin, µmax]
• is convex in µ; and
• has, except in pathological cases, continuous first (but not nece-

ssarily second) derivatives over its domain.

This allows us to compute the efficient frontier in practice,
given the expected return vector γ , covariance matrix 6 and the
constraints.
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