دانلود مقاله ISI انگلیسی شماره 137927
ترجمه فارسی عنوان مقاله

ارزیابی دو معیار خاتمه در الگوریتم های تکاملی برای بهینه سازی چند منظوره فرآیندهای شیمیایی پیچیده

عنوان انگلیسی
Evaluation of two termination criteria in evolutionary algorithms for multi-objective optimization of complex chemical processes
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137927 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Chemical Engineering Research and Design, Volume 124, August 2017, Pages 58-65

ترجمه کلمات کلیدی
بهینه سازی چند هدفه، فرآیندهای شیمیایی، الگوریتمهای تکاملی، الگوریتم ژنتیک، تکامل دیفرانسیل، معافیت / متوقف کردن معیار،
کلمات کلیدی انگلیسی
Multi-objective optimization; Chemical processes; Evolutionary algorithms; Genetic algorithms; Differential evolution; Termination/stopping criterion;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی دو معیار خاتمه در الگوریتم های تکاملی برای بهینه سازی چند منظوره فرآیندهای شیمیایی پیچیده

چکیده انگلیسی

Multi-objective (or multi-criteria) optimization (MOO) is useful for gaining deeper insights into trade-offs among objectives of interest and then selecting one of the many optimal solutions found. It has attracted numerous applications in chemical engineering. Common techniques for MOO are adaptations of stochastic global optimization methods, which include metaheuristics and evolutionary methods, for single-objective optimization. These techniques have been used mostly with maximum number of generations (MNG) as the termination criterion for stopping the iterative search. This criterion is arbitrary and computationally inefficient. Hence, this study investigates two termination criteria based on search progress (i.e., performance or improvement in solutions), for MOO of three complex chemical processes modeled by process simulators, namely, Aspen Plus and Aspen HYSYS. They are Chi-Squared test based Termination Criterion (CSTC) and Steady-State Detection Termination Criterion (SSDTC). Both these criteria are evaluated in two evolutionary algorithms for MOO. Results show that CSTC and SSDTC are successful in giving optimal solutions close to those after MNG but well before MNG. Of the two criteria, CSTC is more reliable and terminates the search earlier, thus reducing computational time substantially.