The problem of option hedging in the presence of proportional transaction costs can be formulated as a singular stochastic control problem. Hodges and Neuberger [1989. Optimal replication of contingent claims under transactions costs. Review of Futures Markets 8, 222–239] introduced an approach that is based on maximization of the expected utility of terminal wealth. We develop a new algorithm to solve the corresponding singular stochastic control problem and introduce a new approach to option hedging which is closer in spirit to the pathwise replication of Black and Scholes [1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–654]. This new approach is based on minimization of a Black–Scholes-type measure of pathwise risk, defined in terms of a market delta, subject to an upper bound on the hedging cost. We provide an efficient backward induction algorithm for the problem of cost-constrained risk minimization, whose associated singular stochastic control problem is shown to be equivalent to an optimal stopping problem. This algorithm is then modified to solve the singular stochastic control problem associated with utility maximization, which cannot be reduced to an optimal stopping problem. We propose to choose an optimal parameter (risk-aversion coefficient or Lagrange multiplier) in either approach by minimizing the mean squared hedging error and demonstrate that with this “best” choice of the parameter, both approaches have similar performance. We also discuss the different notions of risk in both approaches and propose a volatility adjustment for the risk-minimization approach, which is analogous to that introduced by Zakamouline [2006. European option pricing and hedging with both fixed and proportional transaction costs. Journal of Economic Dynamics and Control 30, 1–25] for the utility maximization approach, thereby providing a unified treatment of both approaches.
The problemofoptionpricingandhedgingwasinitiallystudiedinanidealizedsettingwhereaninvestorincursno
transactioncostsfromtradinginamarketconsistingofarisk-freeasset(‘‘bond’’)withconstantrateofreturnandarisky
asset (‘‘stock’’)whosepriceisageometricBrownianmotionwithconstantrateofreturnandvolatility.Forthissetting,
Black andScholes(1973) demonstratedthatintheabsenceofarbitragethevalueofanoptionisanexpectationofthe discountedpayoffatexpirationunderthe‘‘risk-neutral’’measure,forwhichthestock’srateofreturnequalstherisk-free
rate.Moreover,perfectreplicationoftheoptionispossibleandtheoptionisitself‘‘redundant’’insucha‘‘complete’’
market. However,theBlack–Scholes‘‘delta-hedging’’portfoliorequirescontinuoustrading.Inthepresenceoftransaction
costs proportionaltotheamountoftrading,suchacontinuousstrategyisprohibitivelyexpensive.Henceitisimpossibleto
perfectlyreplicatetheoptioninthissettingwhentherearetransactioncostsand,asaresult,tradinginanoptioninvolves
an essentialelementofrisk.
One approachtocharacterizethishedgingriskexaminesthedifferencebetweentherealizedcashflowfromahedging
strategyandthedesiredpayoffatmaturity.Itembedsoptionhedgingwithintheframeworkofportfolioselection
introducedby Magill andConstantinides(1976) and DavisandNorman(1990), andusesarisk-averseutilityfunctionto
assess thisshortfall(‘‘replicationerror’’).Inthisway, HodgesandNeuberger(1989) formulatedtheproblemofoption
hedging asthatofmaximizingtheinvestor’sexpectedutilityofterminalwealth.Makinguseofanindifferenceargument,
the reservationsellingorbuyingpriceofanoptionisdefinedastheamountofmoneythatwouldmakeaninvestor
indifferent, intermsofexpectedutility,betweentradinginthemarketwithandwithouta(shortorlong)positioninthe
option.Thisinvolvesthevaluefunctionsoftwosingularstochasticcontrolproblemsandtheoptimalhedgeisgivenbythe
differenceinthetradingstrategiescorrespondingtothesetwoproblems.Thenatureoftheoptimalhedgeisthatan
investorwithanoptionpositionshouldrebalancehisportfolioonlywhenthenumberofsharesofstockfalls‘‘toofar’’out
of line.Forthenegativeexponentialutilityfunction, Davisetal.(1993), ClewlowandHodges(1997) and Zakamouline
(2006) havedevelopednumericalmethodstocomputetheoptimalhedgeandoptionpricebymakinguseofdiscrete-time
dynamic programmingforanapproximatingbinomialtreeforthestockprice. WhalleyandWilmott(1997) and Barlesand
Soner (1998) havedevelopedasymptoticapproximationsforthesehedgingstrategiesandoptionpricesasthetransaction
costs approach0. ConstantinidesandZariphopoulou(1999,2001) haveprovidedoptionpriceboundsundergeneralutility
functions (ratherthanthenegativeexponentialutilityfunctioncommonlyadoptedfornumericalstudies).Inthispaperwe
make useofanewnumericalmethodforsolvingsingularstochasticcontrolproblems,recentlyintroducedby Lai etal.
(2009), todevelopamuchsimpleralgorithmtocomputethebuy–sellboundariesandvaluefunctionsintheutility-based
approach.
In thepresenceoftransactioncosts,alternativestotheutility-basedapproachhavebeenbasedonsuper-replication(or
replication)inadiscrete-timesettingandareconcernedwithfindingtradingstrategieswhichproducepayoffsat
expirationthatareatleast(orexactly)asvaluableastheoptionpayoff.NotingthatusingtheBlack–Scholesdeltatoshort-
sell deltasharesofstockatthebeginningofeachrevisionintervalintroducestoohightransactioncostsasthewidthofthe
revision intervalshrinksto0, Leland (1985) proposedamodificationofthevarianceusedintheBlack–Scholesdeltasoasto
yield thedesiredoptionpayoffatexpirationinclusiveoftransactioncosts.Thefactthatthismodifiedstrategyisnotself-
financing hasprompted BoyleandVorst(1992) to workinadiscrete-state(binomialtree)frameworktoconstructa selffinancing
discrete-timereplicatingstrategy,therebyextendingthetwo-periodmodelof Merton(1990,Chapter14). Explicit
portfolio weightsateachnodeofthebinomialtreecanbecomputedbyusingabackwardinductionprocedure.However,
these methodsrequiretheusertoexogenouslyspecifyarevisionintervalanditisunclearhowonecandosooptimally.In
fact, asthewidthoftherevisionintervalapproaches0,thecostoftheoptionapproachesthepriceofasingleshareofstock,
which turnsouttobetheleastexpensivewayofsuper-replicatingtheoptioninacontinuous-timemodel;see Soner etal.
(1995). Forthebinomialtreemodel, Bensaid etal.(1992) derivedboundsontheoptionvalueatinceptionbyminimizing
the initialcostoftheself-financingstrategyusedtoproduceasuper-replicatingportfolioofstockandbondatexpiration.
As theyhaveshown,byrebalancingonlyintheearlierperiods,itispossibletohaveasuper-replicatingportfoliothatis less
expensive than thecorrespondingreplicatingportfolio.Ingeneral,theoptimaldiscrete-timesuper-replicatingstrategyis
such thattheinvestorwithanoptionpositiondoesnottransactatatradingdateiftheinheritedamountofstockisina
certain range(whichdependsonthepasthistoryofthestockprice);otherwiseheadjustshisportfoliobacktothisrange.
Notingthatthiscostminimizationproblemassociatedwithsuper-replicationispathdependentandthatthedynamic
programmingalgorithmiscomputationallyexpensiveifthenumberofperiodsisnotsufficientlysmall, Edirisinghe etal.
(1993) developedalinearprogrammingalgorithmandatwo-stagedynamicprogrammingmethodtoapproximatethe
optimalsolution.Morerecently, Primbs (2009) providedanalternativeformulationofsuper-replicationintermsofthefirst
two momentsofthereplicationerror.
In thispaperweproposeanewapproachwhichformulatestheoptionhedgingprobleminthepresenceoftransaction
costs asaconstrainedriskminimizationproblemthatminimizesameasureofpathwiseriskundertheconstraintthatthe
hedging cost(centraltothereplication/super-replicationapproach)doesnotexceedaprescribedlevel.Thismeasureof
pathwise riskisimplicitintheBlack–Scholestheorythatcontinuouslyrebalancestheportfoliotomakesuchriskzero
when therearenotransactioncosts,andleadsinourapproachtoanaturalmodificationoftheBlack–Scholesdelta-hedging
scheme. Inthepresenceoftransactioncosts,thismodificationconsistsofbuyingorsellingtheunderlyingstockwhenever
the holdingofsharesfallsoutsideano-transactionbandcontainingtheoption’sdelta.Thecorrespondingsingular
stochasticcontrolproblem,whoseno-actionregionistheno-transactionband,isequivalenttoanoptimalstopping
problem.Thisequivalenceisusedtocomputethebuy-andsell-boundariesefficiently,therebyreducingsubstantiallythe
computational complexityoftheoriginalsingularstochasticcontrolproblem,whichrequiresdeterminationofboth when
to applythecontrol(intheformofbuyingorselling)and how much controltoapply.
This paperisorganizedasfollows.Section2definesthehedgingcostofaself-financingstrategyandusesittoformulate
the singularstochasticcontrolproblemsassociatedwiththeutilitymaximizationandthecost-constrainedrisk minimization approachestooptionhedginginthepresenceoftransactioncosts.Itwillbeshownthatbothformulationsof
the optionhedgingproblembelongtothegeneralframeworkofminimizingexpectedhedgingcostunderariskconstraint.
Section 3presentsnewalgorithms,whichareconsiderablysimplerthanthosecurrentlyavailable,tocomputetheoptimal
buy-andsell-boundariesforbothsingularstochasticcontrolproblems.Section4givessomenumericalresultstoillustrate
the computationalschemesandcomparetheirhedgingerrorswiththoseof Leland (1985) and Black andScholes(1973)
with prescribedrevisionintervals.SomeconcludingremarksaregiveninSection5.
The precedingsectionshavefocusedonEuropeancalloptionsonstocksthatdonotpaydividends.Since Ds
ðSÞ ¼ IfSoKg
for ashortputand Db
ðSÞ ¼ IfSoKg for alongput,Algorithms1and2canbeappliedtoEuropeanputoptionsbyredefining
DsðzÞ ¼ Ifzo0g for ashortputand DbðzÞ ¼ Ifzo0g for alongput.Recallalsothatfortheput, pBSðt; S; sÞ ¼
KerðTtÞFðd2ðt; S; sÞÞ SFðd1ðt; S; sÞÞ and DBSðt; S; sÞ ¼ Fðd1ðt; S; sÞÞ. Whenthestockpaysdividendsattherate q,
we cansimplyreplace S in theprecedingby SeqðTtÞ. Moregenerally,thealgorithmscanbemodifiedinastraightforward
manner toaccommodatecombinationsofcallsandputs(e.g.,bullspreads,butterflyspreads,etc.)bychangingthe
definitions ofterminalwealthin(4)and(5).
In thepresenceoftransactioncosts,thereisatradeoffbetweenminimizingtheriskassociatedwithwritinganoption
(since thewritercannothedgeawaytheriskentirelybycontinuoustradingoftheunderlyingstock)andkeepingthe
hedging costataminimum.Theutility-maximizationapproachinitiatedby HodgesandNeuberger(1989) introducesa
concaveutilityfunction(usuallychosentobeoftheCARAtypefortractabilityandforitsnaturalquantificationofrisk
aversion)ofterminalwealthandtheformulationleadstothesingularstochasticcontrolprobleminSection2.2.We
introduceanewapproachtooptionhedgingwhichiscloserinspirittothepathwisereplicationof Black andScholes(1973)
and thehedging-costminimizationof Bensaid etal.(1992). Ouralternativecost-constrainedpathwise-riskminimization
formulation leadstothesingularstochasticcontrolprobleminSection2.3whichissimplerandforwhichanefficient
backwardinductionalgorithm(Algorithm1)canbeusedtosolvefortheoptimalbuyandsellboundaries.Wehavealso
modified thealgorithmtoobtainarelativelysimplealgorithm(Algorithm2)forutility-basedoptionpricingandhedging.
Even thoughtheutilitymaximizationandthecost-constrainedpathwise-riskminimizationapproachesusedifferent
notionsofrisk,wehaveshowninSection4.3thatbychoosingtheirassociatedparameters‘‘optimally,’’bothapproaches
havesimilarperformanceintermsoftherootmeansquaredhedgingerror.Moreover,inSection4.4wehavedevelopeda
volatilityadjustmentforthecost-constrainedpathwise-riskminimizationapproach,whichisanalogoustothatintroduced
by Zakamouline (2006) for theutilitymaximizationapproach.Inthiswayandalsointhecomputationalalgorithmsof
Section 3,aunifiedtreatmentofbothapproachesisprovided.