دانلود مقاله ISI انگلیسی شماره 42788
ترجمه فارسی عنوان مقاله

یک سیستم هوشمند برای طبقه بندی کیفیت تخم مرغ بر اساس طیف سنجی مادون قرمز قابل مشاهده قابل عبور

عنوان انگلیسی
An intelligent system for egg quality classification based on visible-infrared transmittance spectroscopy
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
42788 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Processing in Agriculture, Volume 1, Issue 2, December 2014, Pages 105–114

ترجمه کلمات کلیدی
طبقه بندی تخم مرغ - طیف سنجی - تجزیه و تحلیل مولفه های اصلی - الگوریتم ژنتیک
کلمات کلیدی انگلیسی
Egg classification; Spectroscopy; Principal component analysis; Genetic algorithm
پیش نمایش مقاله
پیش نمایش مقاله  یک سیستم هوشمند برای طبقه بندی کیفیت تخم مرغ بر اساس طیف سنجی مادون قرمز قابل مشاهده قابل عبور

چکیده انگلیسی

The potential of the visible infrared (Vis–IR) (400–1100 nm) transmittance method to assess the internal quality (freshness) of intact chicken egg during storage at a temperature of 30 ± 7 °C and 25 ± 4% relative humidity was investigated. Two hundred chicken egg samples were used for measuring freshness and spectra collection during egg storage (up to 25 days). Two correlation models, firstly between Haugh unit (HU) and storage time, and secondly between the yolk coefficient (YC) and storage time, were developed and yielded correlation coefficients (R2) of 0.86 and 0.96, respectively. These models spanned the period for which egg quality decreased dramatically and are statistically significant (P < 0.05). In addition, to reduce the dimensionality of the spectra and extract effective wavelengths, two methods were developed based on principal component analysis (PCA) and a genetic algorithm (GA). The output of PCA and GA were also used comparatively to design an egg quality intelligent system. The result of the analyses indicated that identification ratio of GA with fast Fourier transform (FFT) preprocessing was superior to other methods, and that the quality classification rates of this method for one-day-old eggs are 100%. This study shows that identification of an egg’s freshness using NIR spectroscopy with GA and artificial neural network (ANN) is reliable.