دانلود مقاله ISI انگلیسی شماره 42804
ترجمه فارسی عنوان مقاله

سیستم هوشمند خودکار برای تضمین کیفیت دستگاه آشکارسازهای صوتی

عنوان انگلیسی
Automated intelligent system for sound signalling device quality assurance
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
42804 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 294, 10 February 2015, Pages 600–611

ترجمه کلمات کلیدی
تشخیص صدا غیر از سخنرانی - پردازش سیگنال های صوتی - شبکه های عصبی مصنوعی - خودکار رمزگذار - ساخت - اتوماسیون
کلمات کلیدی انگلیسی
Non-speech sound recognition; Audio signal processing; Artificial neural networks; Auto-encoder; Manufacturing; Automation
پیش نمایش مقاله
پیش نمایش مقاله  سیستم هوشمند خودکار برای تضمین کیفیت دستگاه آشکارسازهای صوتی

چکیده انگلیسی

This paper presents a novel approach to the detection and recognition of faulty audio signalling devices as part of an automated industrial manufacturing quality assurance process. The proposed system outperforms other well-established automated systems based on mel-frequency cepstrum coefficients (MFCC) and multi-layer perceptron (MLP). It uses both unlabelled sound data and labelled historical data acquired from human experts in detecting faulty signalling devices. The unlabelled data is used to train a deep neural network generative model to create multiple levels of hierarchical feature extractors which are used to train an MLP classifier, with the intent to model the human reasoning and judging processes in respect to sound classification. This paper presents the results of real world experiments based on data pertaining to the audio signalling quality assurance process for car instrument cluster manufacturing. These results show that the proposed system is able to successfully classify speakers into two groups: “Good” and “No good” depending on the part quality. The proposed system proves to be capable enough to eliminate the need for a manual inspection within the manufacturing process and is shown to be able to diagnose a fault with a high degree of accuracy. This work can be extended to other areas of automotive inspection where there is a need for a robust solution to sound detection and where an output signal is represented by a complex and changing frequency spectrum even with significant environmental noise.