دانلود مقاله ISI انگلیسی شماره 42807
ترجمه فارسی عنوان مقاله

تشخیص سرطان تخمدان با استفاده از یک سیستم هوشمند ترکیبی با قوانین قانع کننده ساده

عنوان انگلیسی
Ovarian cancer diagnosis using a hybrid intelligent system with simple yet convincing rules
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
42807 2014 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 20, July 2014, Pages 25–39

ترجمه کلمات کلیدی
تشخیص سرطان تخمدان - سیستم پشتیبانی تصمیم گیری - سیستم ترکیبی هوشمند - انتخاب ویژگی
کلمات کلیدی انگلیسی
Ovarian cancer diagnosis; Decision support system; Hybrid intelligent system; Interpretability; Feature selection
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص سرطان تخمدان با استفاده از یک سیستم هوشمند ترکیبی با قوانین قانع کننده ساده

چکیده انگلیسی

Ovarian cancer is the ninth most common cancer among women and ranks fifth in cancer deaths. Statistics show that the five-year survival rate is greater than 75% if diagnosis occurs before the cancer cells have spread to other organs (stage I), but it drops to 20% when the cancer cells have spread to upper abdomen (stage III). Therefore, it is crucial to detect ovarian cancer as early as possible and to correctly identify the stage of the cancer to prevent any further delay of appropriate treatments. In this paper, we propose a novel self-organizing neural fuzzy inference system that functions as a reliable decision support system for ovarian cancer diagnoses. The system only requires a limited number of control parameters and constraints to derive simple yet convincing inference rules without human intervention and expert guidance. Because feature selection and attribute reduction are performed during training, the inference rules possess a great level of interpretability. Experiments are conducted on both established medical data sets and real-world cases collected from hospital. The experimental results of our proposed model in ovarian cancer diagnoses are encouraging because it achieves the most number of correct diagnoses when benchmarked against other computational intelligence based models. More importantly, its automatically derived rules are consistent with expert knowledge.