دانلود مقاله ISI انگلیسی شماره 44383
ترجمه فارسی عنوان مقاله

بهترین عمل الگوبرداری با استفاده از روش خوشه بندی: نرم افزار برای مقررات انرژی

عنوان انگلیسی
Best-practice benchmarking using clustering methods: Application to energy regulation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
44383 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Omega, Volume 42, Issue 1, January 2014, Pages 179–188

ترجمه کلمات کلیدی
خوشه - توزیع برق - تحلیل پوششی داده ها - تجزیه و تحلیل مرزی تصادفی -
کلمات کلیدی انگلیسی
NMM, normal mixture model; StoNED, stochastic non-smooth envelopment of data; DEA, data envelopment analysis; DMU, decision making unit; SFA, stochastic frontier analysis; CNLS, Non-parametric methods including convex non-parametric least squares; CRS, constant returns to scale; VRS, variable returns to scaleBenchmark regulation; Productive efficiency; Data envelopment analysis (DEA); Stochastic non-smooth envelopment of data (StoNED); Clustering; Electricity distribution
پیش نمایش مقاله
پیش نمایش مقاله  بهترین عمل الگوبرداری با استفاده از روش خوشه بندی: نرم افزار برای مقررات انرژی

چکیده انگلیسی

Data envelopment analysis (DEA) is widely used as a benchmarking tool for improving productive performance of decision making units (DMUs). The benchmarks produced by DEA are obtained as a side-product of computing efficiency scores. As a result, the benchmark units may differ from the evaluated DMU in terms of their input–output profiles and the scale size. Moreover, the DEA benchmarks may operate in a more favorable environment than the evaluated DMU. Further, DEA is sensitive to stochastic noise, which can affect the benchmarking exercise. In this paper we propose a new approach to benchmarking that combines the frontier estimation techniques with clustering methods. More specifically, we propose to apply some clustering methods to identify groups of DMUs that are similar in terms of their input–output profiles or other observed characteristics. We then rank DMUs in the descending order of efficiency within each cluster. The cluster-specific efficiency rankings enable the management to identify not only the most efficient benchmark, but also other peers that operate more efficiently within the same cluster. The proposed approach is flexible to combine any clustering method with any frontier estimation technique. The inputs of clustering and efficiency analysis are user-specified and can be multi-dimensional. We present a real world application to the regulation of electricity distribution networks in Finland, where the regulator uses the semi-nonparametric StoNED method (stochastic non-parametric envelopment of data). StoNED can be seen as a stochastic extension of DEA that takes the noise term explicitly into account. We find that the cluster-specific efficiency rankings provide more meaningful benchmarks than the conventional approach of using the intensity weights obtained as a side-product of efficiency analysis.