دانلود مقاله ISI انگلیسی شماره 46042
ترجمه فارسی عنوان مقاله

داده کاوی برای سیستم های تشخیص فازی در شبکه های LTE

عنوان انگلیسی
Data mining for fuzzy diagnosis systems in LTE networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46042 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 21, 30 November 2015, Pages 7549–7559

ترجمه کلمات کلیدی
خود ترمیم شونده - شبکه های خود سازمان ده - LTE - داده کاوی - داده های آموزش محور - یادگیری نظارت شده - مدیریت خطا - سیستم های فازی - اطلاعات بزرگ
کلمات کلیدی انگلیسی
Self-healing; Self-Organizing Networks; LTE; Data mining; Data driven learning; Supervised learning; Fault management; Fuzzy systems; Big Data
پیش نمایش مقاله
پیش نمایش مقاله  داده کاوی برای سیستم های تشخیص فازی در شبکه های LTE

چکیده انگلیسی

The recent developments in cellular networks, along with the increase in services, users and the demand of high quality have raised the Operational Expenditure (OPEX). Self-Organizing Networks (SON) are the solution to reduce these costs. Within SON, self-healing is the functionality that aims to automatically solve problems in the radio access network, at the same time reducing the downtime and the impact on the user experience. Self-healing comprises four main functions: fault detection, root cause analysis, fault compensation and recovery. To perform the root cause analysis (also known as diagnosis), Knowledge-Based Systems (KBS) are commonly used, such as fuzzy logic. In this paper, a novel method for extracting the Knowledge Base for a KBS from solved troubleshooting cases is proposed. This method is based on data mining techniques as opposed to the manual techniques currently used. The data mining problem of extracting knowledge out of LTE troubleshooting information can be considered a Big Data problem. Therefore, the proposed method has been designed so it can be easily scaled up to process a large volume of data with relatively low resources, as opposed to other existing algorithms. Tests show the feasibility and good results obtained by the diagnosis system created by the proposed methodology in LTE networks.