دانلود مقاله ISI انگلیسی شماره 46049
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل تشخیص خطا با استفاده از تکنیک های داده کاوی برای یک خوشه از ساختمان های اداری هوشمند

عنوان انگلیسی
Fault detection analysis using data mining techniques for a cluster of smart office buildings
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46049 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 9, 1 June 2015, Pages 4324–4338

ترجمه کلمات کلیدی
ساختمان های هوشمند - ANN - الگو شناسی - تشخیص خطا
کلمات کلیدی انگلیسی
Smart building; ANN; Pattern recognition; Fault detection
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل تشخیص خطا با استفاده از تکنیک های داده کاوی برای یک خوشه از ساختمان های اداری هوشمند

چکیده انگلیسی

There is an increasing need for automated fault detection tools in buildings. The total energy request in buildings can be significantly reduced by detecting abnormal consumption effectively. Numerous models are used to tackle this problem but either they are very complex and mostly applicable to components level, or they cannot be adopted for different buildings and equipment. In this study a simplified approach to automatically detect anomalies in building energy consumption based on actual recorded data of active electrical power for lighting and total active electrical power of a cluster of eight buildings is presented. The proposed methodology uses statistical pattern recognition techniques and artificial neural ensembling networks coupled with outliers detection methods for fault detection. The results show the usefulness of this data analysis approach in automatic fault detection by reducing the number of false anomalies. The method allows to identify patterns of faults occurring in a cluster of bindings; in this way the energy consumption can be further optimized also through the building management staff by informing occupants of their energy usage and educating them to be proactive in their energy consumption. Finally, in the context of smart buildings, the common detected outliers in the cluster of buildings demonstrate that the management of a smart district can be operated with the whole buildings cluster approach.