دانلود مقاله ISI انگلیسی شماره 46284
ترجمه فارسی عنوان مقاله

استفاده از منطق فازی در پیش بینی ضریب سلول جانبی برای ستون های RC پیچیده شده با CFRP

عنوان انگلیسی
Application of fuzzy logic approach in predicting the lateral confinement coefficient for RC columns wrapped with CFRP
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46284 2015 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Structures, Volume 88, 1 April 2015, Pages 74–91

ترجمه کلمات کلیدی
هوش مصنوعی - ستون بتن - الیاف و پلیمرهای تقویت شده - منطق فازی - ضریب سلول های جانبی
کلمات کلیدی انگلیسی
Artificial intelligence; Concrete column; Fiber reinforced polymer; Fuzzy logic; Lateral confinement coefficient
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از منطق فازی در پیش بینی ضریب سلول جانبی برای ستون های RC پیچیده شده با CFRP

چکیده انگلیسی

Worldwide ageing infrastructures which are vulnerable to seismic lateral loads and located in high seismicity regions have arrested the interest of many researchers to find alternative materials and techniques to strengthen in bending and shear, for example reinforced concrete (RC) beams, slabs, columns, etc. There are several strengthening/repair techniques and materials in literature. Although the method of strengthening concrete structures with fiber reinforced polymers (FRP) is a relatively new technique, it has existed for more than two decades. In this context, several confinement models have been developed for FRP-confined concrete for the prediction of stress–strain response and several researchers have developed various constitutive models to measure the increase in the axial strength of concrete due to the confinement effect of FRP laminates. In this study, RC columns wrapped with carbon FRP (CFRP) considering some existing confinement models in the literature have been investigated. Moreover, based on the experimental data set in the literature, a new artificial intelligence-based algorithm (a Mamdani-type fuzzy inference system) was implemented to model the strength enhancement of CFRP confined RC columns using fuzzy logic methodology. Fuzzy logic predicted results were compared with the outputs of a non-linear regression analysis-based exponential model derived in the scope of the present work. The best predictive performances of the models were assessed by means of various descriptive statistical indicators. The comparison of the proposed prognostic approach with existing empirical and experimental data exhibits a very good precision of the developed artificial intelligence-based model in predicting the lateral confinement coefficient in CFRP wrapped RC columns.