دانلود مقاله ISI انگلیسی شماره 46747
ترجمه فارسی عنوان مقاله

فرآیند یادگیری برنامه اشغال از طریق یک چارچوب داده کاوی

عنوان انگلیسی
Occupancy schedules learning process through a data mining framework
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46747 2015 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy and Buildings, Volume 88, 1 February 2015, Pages 395–408

ترجمه کلمات کلیدی
رفتار مستاجر - داده کاوی - برنامه اشغال - الگوی رفتاری - ساختمان اداری - شبیه سازی ساختمان
کلمات کلیدی انگلیسی
Occupant behavior; Data mining; Occupancy schedule; Behavioral pattern; Office building; Building simulation
پیش نمایش مقاله
پیش نمایش مقاله   فرآیند یادگیری برنامه اشغال از طریق یک چارچوب داده کاوی

چکیده انگلیسی

Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10 min interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. The identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.