دانلود مقاله ISI انگلیسی شماره 46783
ترجمه فارسی عنوان مقاله

مجموعه های سخت کامپوزیت برای داده کاوی پویا

عنوان انگلیسی
Composite rough sets for dynamic data mining ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46783 2014 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 257, 1 February 2014, Pages 81–100

ترجمه کلمات کلیدی
مجموعه های سخت - داده کاوی - آموزش افزایشی - ماتریس - سیستم های اطلاعات کامپوزیت
کلمات کلیدی انگلیسی
Rough sets; Data mining; Incremental learning; Matrix; Composite information systems
پیش نمایش مقاله
پیش نمایش مقاله  مجموعه های سخت کامپوزیت برای داده کاوی پویا

چکیده انگلیسی

As a soft computing tool, rough set theory has become a popular mathematical framework for pattern recognition, data mining and knowledge discovery. It can only deal with attributes of a specific type in the information system by using a specific binary relation. However, there may be attributes of multiple different types in information systems in real-life applications. Such information systems are called as composite information systems in this paper. A composite relation is proposed to process attributes of multiple different types simultaneously in composite information systems. Then, an extended rough set model, called as composite rough sets, is presented. We also redefine lower and upper approximations, positive, boundary and negative regions in composite rough sets. Through introducing the concepts of the relation matrix, the decision matrix and the basic matrix, we propose matrix-based methods for computing the approximations, positive, boundary and negative regions in composite information systems, which is crucial for feature selection and knowledge discovery. Moreover, combined with the incremental learning technique, a novel matrix-based method for fast updating approximations is proposed in dynamic composite information systems. Extensive experiments on different data sets from UCI and user-defined data sets show that the proposed incremental method can process large data sets efficiently.