دانلود مقاله ISI انگلیسی شماره 48574
ترجمه فارسی عنوان مقاله

پیش بینی ساختمان مدل با طبقه بندی راه انداز خوشه بندی و بردار پشتیبانی ماشین در امتیازدهی اعتباری

عنوان انگلیسی
Prediction model building with clustering-launched classification and support vector machines in credit scoring
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48574 2009 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 36, Issue 4, May 2009, Pages 7562–7566

ترجمه کلمات کلیدی
امتیازدهی اعتباری - پشتیبانی از ماشین بردار - طبقه بندی راه انداز خوشه بندی
کلمات کلیدی انگلیسی
Credit scoring; Support vector machine; Clustering-launched classification
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی ساختمان مدل با طبقه بندی راه انداز خوشه بندی و بردار پشتیبانی ماشین در امتیازدهی اعتباری

چکیده انگلیسی

Recently, credit scoring has become a very important task as credit cards are now widely used by customers. A method that can accurately predict credit scoring is greatly needed and good prediction techniques can help to predict credit more accurately. One powerful classifier, the support vector machine (SVM), was successfully applied to a wide range of domains. In recent years, researchers have applied the SVM-based in the prediction of credit scoring, and the results have been shown it to be effective. In this study, two real world credit datasets in the University of California Irvine Machine Learning Repository were selected. SVM and a new classifier, clustering-launched classification (CLC), were employed to predict the accuracy of credit scoring. The advantages of using CLC are that it can classify data efficiently and only need one parameter needs to be decided. In substance, the results show that CLC is better than SVM. Therefore, CLC is an effective tool to predict credit scoring.