دانلود مقاله ISI انگلیسی شماره 51077
ترجمه فارسی عنوان مقاله

بازی امنیتی استکلبرگ با استراتژی های تصادفی بر اساس رویکرد نظری پروگزیمال اضافی

عنوان انگلیسی
A Stackelberg security game with random strategies based on the extraproximal theoretic approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51077 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 37, January 2015, Pages 145–153

ترجمه کلمات کلیدی
بازی های امنیتی؛ تعادل استکلبرگ قوی؛ روش پروگزیمال فوق العاده؛ زنجیره مارکوف محدود
کلمات کلیدی انگلیسی
Security games; Strong Stackelberg equilibrium; Extraproximal method; Finite Markov chains
پیش نمایش مقاله
پیش نمایش مقاله  بازی امنیتی استکلبرگ با استراتژی های تصادفی بر اساس رویکرد نظری پروگزیمال اضافی

چکیده انگلیسی

In this paper we present a novel approach for representing a real-world attacker–defender Stackelberg security game-theoretic model based on the extraproximal method. We focus on a class of ergodic controlled finite Markov chain games. The extraproximal problem formulation is considered as a nonlinear programming problem with respect to stationary distributions. The Lagrange principle and Tikhonov׳s regularization method are employed to ensure the convergence of the cost functions. We transform the problem into a system of equations in a proximal format, and a two-step (prediction and basic) iterated procedure is applied to solve the formulated problem. In particular, the extraproximal method is employed for computing mixed strategies, providing a strong optimization formulation to compute the Stackelberg/Nash equilibrium. Mixed strategies are especially found when the resources available for both the defender and the attacker are limited. In this sense, each equation in this system is an optimization problem for which the minimum is found using a quadratic programming approach. The model supports a defender and N attackers. In order to address the dynamic execution uncertainty in security patrolling, we provide a game-theoretic based method for scheduling randomized patrols. Simulation results provide a validations of our approach.