دانلود مقاله ISI انگلیسی شماره 51161
ترجمه فارسی عنوان مقاله

یک مدل ترکیبی بر اساس نظریه مجموعه های راف و الگوریتم های ژنتیکی برای پیش بینی قیمت سهام

عنوان انگلیسی
A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51161 2010 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 180, Issue 9, 1 May 2010, Pages 1610–1629

ترجمه کلمات کلیدی
تئوری مجموعه سخت؛ الگوریتم های ژنتیکی؛ رویکرد توزیع احتمال تجمعی؛ به حداقل رساندن رویکرد اصل آنتروپی؛ شاخص های فنی
کلمات کلیدی انگلیسی
Rough set theory; Genetic algorithms; Cumulative probability distribution approach; Minimize entropy principle approach; Technical indicators
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل ترکیبی بر اساس نظریه مجموعه های راف و الگوریتم های ژنتیکی برای پیش بینی قیمت سهام

چکیده انگلیسی

In order to overcome these drawbacks, this paper proposes a hybrid forecasting model, using multi-technical indicators to predict stock price trends. Further, it includes four proposed procedures in the hybrid model to provide efficient rules for forecasting, which are evolved from the extracted rules with high support value, by using the toolset based on rough sets theory (RST): (1) select the essential technical indicators, which are highly related to the future stock price, from the popular indicators based on a correlation matrix; (2) use the cumulative probability distribution approach (CDPA) and minimize the entropy principle approach (MEPA) to partition technical indicator value and daily price fluctuation into linguistic values, based on the characteristics of the data distribution; (3) employ a RST algorithm to extract linguistic rules from the linguistic technical indicator dataset; and (4) utilize genetic algorithms (GAs) to refine the extracted rules to get better forecasting accuracy and stock return. The effectiveness of the proposed model is verified with two types of performance evaluations, accuracy and stock return, and by using a six-year period of the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) as the experiment dataset. The experimental results show that the proposed model is superior to the two listed forecasting models (RST and GAs) in terms of accuracy, and the stock return evaluations have revealed that the profits produced by the proposed model are higher than the three listed models (Buy-and-Hold, RST and GAs).