دانلود مقاله ISI انگلیسی شماره 52570
ترجمه فارسی عنوان مقاله

مقایسه درمان عدم اطمینان در شبکه های بیزی و سیستم های خبره فازی استفاده شده برای نرم افزار تجزیه و تحلیل قابلیت اطمینان انسانی

عنوان انگلیسی
Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52570 2015 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Reliability Engineering & System Safety, Volume 138, June 2015, Pages 176–193

ترجمه کلمات کلیدی
رجوع به خبرگان - مدل کارشناس - شبکه های بیزی اعتقاد - منطق فازی - تجزیه و تحلیل قابلیت اطمینان انسانی - ارزیابی وابستگی
کلمات کلیدی انگلیسی
Expert judgement; Expert models; Bayesian belief networks; Fuzzy logic; Human reliability analysis; Dependence assessment
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه درمان عدم اطمینان در شبکه های بیزی و سیستم های خبره فازی استفاده شده برای نرم افزار تجزیه و تحلیل قابلیت اطمینان انسانی

چکیده انگلیسی

The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty.