دانلود مقاله ISI انگلیسی شماره 53057
ترجمه فارسی عنوان مقاله

مقایسه شبکه عصبی مصنوعی و سنسور توسعه یافته فیلتر کالمن بر اساس تخمین سرعت

عنوان انگلیسی
A comparison of artificial neural network and extended Kalman filter based sensorless speed estimation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
53057 2015 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Measurement, Volume 63, March 2015, Pages 152–158

ترجمه کلمات کلیدی
تخمین سرعت - شبکه های عصبی؛ کنترل بدون سنسور - برآورد مبتنی بر مدل
کلمات کلیدی انگلیسی
Speed estimation; Neural networks; Sensorless control; Model-based estimation
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه شبکه عصبی مصنوعی و سنسور توسعه یافته فیلتر کالمن بر اساس تخمین سرعت

چکیده انگلیسی

In industry speed estimation is one of the most important issue for monitoring and controlling systems. These kind of processes require costly measurement equipment. This issue can be eliminated by designing a sensorless system. In this paper we present a sensorless algorithm to estimate shaft speed of a dc motor for closed-loop control using an Artificial Neural Network (ANN). The method is based on the use of ANN to obtain a convenient correction for improving the calculated model speed. Three architectures of ANNs are developed and performance evaluations of the networks are performed by three performance criteria. After the evaluations, Levenberg–Marquardt backpropagation algorithm is chosen as learning algorithm due to its good performance. The speed estimation performance of developed ANN was compared with Extended Kalman Filter (EKF) under the same conditions. The results indicates that the proposed ANN shows better performance than the EKF. And ANN model can be used for speed estimation with reasonable accuracy.