دانلود مقاله ISI انگلیسی شماره 53101
ترجمه فارسی عنوان مقاله

فیلترهای کالمن آنسامبل و خصوصیات هندسی فضاهای حساسیت برای تعیین مقدار عدم قطعیت در بهینه سازی

عنوان انگلیسی
Ensemble Kalman Filters and geometric characterization of sensitivity spaces for uncertainty quantification in optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
53101 2015 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Methods in Applied Mechanics and Engineering, Volume 290, 15 June 2015, Pages 228–249

ترجمه کلمات کلیدی
تعیین کمی عدم قطعیت - زاویه اصلی؛ مشکلات معکوس؛ تطبیق تاریخچه؛ حالات شدید
کلمات کلیدی انگلیسی
EnKF; Uncertainty quantification; Principal angles; Inverse problems; History matching; Extreme scenarios
پیش نمایش مقاله
پیش نمایش مقاله  فیلترهای کالمن آنسامبل و خصوصیات هندسی فضاهای حساسیت برای تعیین مقدار عدم قطعیت در بهینه سازی

چکیده انگلیسی

We present an original framework for uncertainty quantification (UQ) in optimization. It is based on a cascade of ingredients with growing computational complexity for both forward and reverse uncertainty propagation. The approach is merely geometric. It starts with a complexity-based splitting of the independent variables and the definition of a parametric optimization problem. Geometric characterization of global sensitivity spaces through their dimensions and relative positions by the principal angles between global search subspaces bring a first set of information on the impact of uncertainties on the functioning parameters on the optimal solution. Joining the multi-point descent direction and the quantiles on the optimization parameters permits to define the notion of Directional Extreme Scenarios (DES) without sampling of large dimension design spaces. One goes beyond DES with Ensemble Kalman Filters (EnKF) after the multi-point optimization algorithm is cast into an ensemble simulation environment. This formulation accounts for the variability in large dimension. The UQ cascade ends with the joint application of the EnKF and DES leading to the concept of Ensemble Directional Extreme Scenarios (EDES) which provides more exhaustive possible extreme scenarios knowing the Probability Density Function of our optimization parameters. A final interest of the approach is that it provides an indication of the size of the ensemble which must be considered in the EnKF. These ingredients are illustrated on an history matching problem.