دانلود مقاله ISI انگلیسی شماره 56523
ترجمه فارسی عنوان مقاله

یک روش هوشمند جدید برای پیش بینی موقعیت انحراف در سیستم های انرژی باد

عنوان انگلیسی
A novel intelligent approach for yaw position forecasting in wind energy systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
56523 2015 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 69, July 2015, Pages 406–413

ترجمه کلمات کلیدی
موقعیت انحراف؛ توربین های بادی؛ پیش بینی؛ یادگیری تنبل؛
کلمات کلیدی انگلیسی
Yaw position; Wind turbines; Forecasting; Lazy learning; Multi-tupled inputs
پیش نمایش مقاله
پیش نمایش مقاله  یک روش هوشمند جدید برای پیش بینی موقعیت انحراف در سیستم های انرژی باد

چکیده انگلیسی

Yaw control systems orientate the rotor of a wind turbine into the wind direction, optimize the wind power generated by wind turbines and alleviate the mechanical stresses on a wind turbine. Regarding the advantages of yaw control systems, a k-nearest neighbor classifier (k-NN) has been developed in order to forecast the yaw position parameter at 10-min intervals in this study. Air temperature, atmosphere pressure, wind direction, wind speed, rotor speed and wind power parameters are used in 2, 3, 4, 5 and 6-dimensional input spaces. The forecasting model using Manhattan distance metric for k = 3 uncovered the most accurate performance for atmosphere pressure, wind direction, wind speed and rotor speed inputs. However, the forecasting model using Euclidean distance metric for k = 1 brought out the most inconsistent results for atmosphere pressure and wind speed inputs. As a result of multi-tupled analyses, many feasible inferences were achieved for yaw position control systems. In addition, the yaw position forecasting model developed was compared with the persistence model and it surpassed the persistence model significantly in terms of the improvement percent.