دانلود مقاله ISI انگلیسی شماره 58311
ترجمه فارسی عنوان مقاله

پیش بینی اضافه بار خط انتقال با استفاده از روش هوشمند

عنوان انگلیسی
Prediction of transmission line overloading using intelligent technique
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
58311 2008 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 8, Issue 1, January 2008, Pages 626–633

ترجمه کلمات کلیدی
شبکه های عصبی آبشار؛ شبکه عصبی شمارنده انتشار ؛ ماژول شناسایی؛ ماژول پیش بینی؛ پیش بینی اضافه بار ؛ طبقه حاکم؛ طبقه تحت سلطه - اصلاح الگوریتم BP؛ جریان برق
کلمات کلیدی انگلیسی
Cascade neural network; Counterpropagation neural network; Identification module; Prediction module; Overloading prediction; Dominant class; Subordinate class; Modified BP algorithm; Power flows
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی اضافه بار خط انتقال با استفاده از روش هوشمند

چکیده انگلیسی

With the worldwide deregulation of power system, fast line flows or real power (MW) security assessment has become a challenging task for which fast and accurate prediction of line flows is essential. Since last few years, limit violation of voltage and line loading has been responsible for undesirable incidents of power system collapse leading to partial or even complete blackouts. Accurate prediction and alleviation of line overloads is the suitable corrective action to avoid network collapse. The control action strategies to limit the transmission line loading to the security limits are generation rescheduling/load shedding. In this paper, an intelligent technique based on cascade neural network (CNN) is presented for identification of the overloaded transmission lines in a power system and for prediction of overloading amount in the identified overloaded lines. The effectiveness of the proposed CNN based approach is demonstrated by identification and prediction of line overloading for different generation/loading conditions in IEEE 14-bus system. Once the cascade neural network is trained properly, it provides accurate and quick results for previously unseen loading scenarios during testing phase.