دانلود مقاله ISI انگلیسی شماره 70405
ترجمه فارسی عنوان مقاله

طراحی شبکه لجستیک بشردوستانه تحت عدم قطعیت مخلوط

عنوان انگلیسی
Humanitarian logistics network design under mixed uncertainty
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
70405 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 250, Issue 1, 1 April 2016, Pages 239–250

ترجمه کلمات کلیدی
تدارکات بشردوستانه - توزیع امدادی و موقع یابی موجودی یکپارچه - برنامه نویسی تصادفیpossibilistic مخلوط
کلمات کلیدی انگلیسی
Humanitarian logistics; Integrated stock prepositioning and relief distribution; Mixed possibilistic-stochastic programming; Differential evolution
پیش نمایش مقاله
پیش نمایش مقاله  طراحی شبکه لجستیک بشردوستانه تحت عدم قطعیت مخلوط

چکیده انگلیسی

In this paper, we address a two-echelon humanitarian logistics network design problem involving multiple central warehouses (CWs) and local distribution centers (LDCs) and develop a novel two-stage scenario-based possibilistic-stochastic programming (SBPSP) approach. The research is motivated by the urgent need for designing a relief network in Tehran in preparation for potential earthquakes to cope with the main logistical problems in pre- and post-disaster phases. During the first stage, the locations for CWs and LDCs are determined along with the prepositioned inventory levels for the relief supplies. In this stage, inherent uncertainties in both supply and demand data as well as the availability level of the transportation network's routes after an earthquake are taken into account. In the second stage, a relief distribution plan is developed based on various disaster scenarios aiming to minimize: total distribution time, the maximum weighted distribution time for the critical items, total cost of unused inventories and weighted shortage cost of unmet demands. A tailored differential evolution (DE) algorithm is developed to find good enough feasible solutions within a reasonable CPU time. Computational results using real data reveal promising performance of the proposed SBPSP model in comparison with the existing relief network in Tehran. The paper contributes to the literature on optimization based design of relief networks under mixed possibilistic-stochastic uncertainty and supports informed decision making by local authorities in increasing resilience of urban areas to natural disasters.