دانلود مقاله ISI انگلیسی شماره 76891
ترجمه فارسی عنوان مقاله

الگوریتم انتخاب منفی با آشکارسازهای ثابت برای تشخیص ناهنجاری

عنوان انگلیسی
Negative selection algorithm with constant detectors for anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76891 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 36, November 2015, Pages 618–632

ترجمه کلمات کلیدی
سیستم ایمنی مصنوعی؛ الگوریتم انتخاب منفی؛ تشخیص ناهنجاری؛ وضع
کلمات کلیدی انگلیسی
Artificial immune system; Negative selection algorithm; Anomaly detection; Bearing
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم انتخاب منفی با آشکارسازهای ثابت برای تشخیص ناهنجاری

چکیده انگلیسی

In the paper, two novel negative selection algorithms (NSAs) were proposed: FB-NSA and FFB-NSA. FB-NSA has two types of detectors: constant-sized detector (CFB-NSA) and variable-sized detector (VFB-NSA). The detectors of traditional NSA are generated randomly. Even for the same training samples, the position, size, and quantity of the detectors generated in each time are different. In order to eliminate the effect of training times on detectors, in the proposed approaches, detectors are generated in non-random ways. To determine the performances of the approaches, the experiments on 2-dimensional synthetic datasets, Iris dataset and ball bearing fault data were performed. Results show that FB-NSA and FFB-NSA outperforms the other anomaly detection methods in most cases. Besides, CFB-NSA can detect the abnormal degree of mechanical equipment. To determine the performances of CFB-NSA, the experiments on ball bearing fault data were performed. Results show that the abnormal degree based on the CFB-NSA can be used to diagnose the different fault types with the same fault degree, and the same fault type with the different fault degree.