دانلود مقاله ISI انگلیسی شماره 76934
ترجمه فارسی عنوان مقاله

تکامل تشخیص مرزها برای تشخیص ناهنجاری

عنوان انگلیسی
Evolving boundary detector for anomaly detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
76934 2011 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 3, March 2011, Pages 2412–2420

ترجمه کلمات کلیدی
سیستمهای ایمنی مصنوعی؛ تشخیص ناهنجاری؛ انتخاب منفی ارزش واقعی؛ جستجوی تکاملی؛ سوراخ - فریب ناهنجاری
کلمات کلیدی انگلیسی
Artificial immune systems; Anomaly detection; Real-valued negative selection; Evolutionary search; Hole; Deceiving anomaly
پیش نمایش مقاله
پیش نمایش مقاله  تکامل تشخیص مرزها برای تشخیص ناهنجاری

چکیده انگلیسی

In real-valued negative selection algorithm, the variability of self sample would result in the holes on the boundary between the self and non-self region and the deceiving anomalies hidden in the self region. This paper analyzes the reason for the difficulty in handling these problems by traditional evolved detectors, and then proposes a method of evolving boundary detectors to solve them. This method uses an improved detector generation algorithm based on evolutionary search to generate boundary detectors. The boundary detectors constructed by an aggressive interpretation are allowed to cover a part of self region. The aggressiveness controlled by boundary threshold can convert some volume of self sample into the fitness of boundary detector. This makes them enable to eliminate the holes on the boundary and have an opportunity to detect the deceiving anomalies hidden in the self region. Experiments are carried out using both 2-dimensional dataset and real world dataset. The former was designed to demonstrate intuitively that boundary detectors can cover the holes on the boundary, while the latter was to show that boundary detectors can detect the deceiving anomalies.