دانلود مقاله ISI انگلیسی شماره 78787
ترجمه فارسی عنوان مقاله

پیش بینی مبتنی بر مدل میانگین واریانس برای انتخاب دارایی نمونه کارهای محدود با استفاده از الگوریتم های تکاملی چند هدفه

عنوان انگلیسی
Prediction based mean-variance model for constrained portfolio assets selection using multiobjective evolutionary algorithms
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78787 2016 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Swarm and Evolutionary Computation, Volume 28, June 2016, Pages 117–130

ترجمه کلمات کلیدی
بهینه سازی سبد سهام محدود - بهینه سازی چند هدفه؛ شبکه های عصبی مصنوعی لینک های کاربردی ؛ مرز کارا؛ مرتب سازی غیر تحت سلطه؛ آزمون آماری ناپارامتری
کلمات کلیدی انگلیسی
Constrained portfolio optimization; Multiobjective optimization; Functional link artificial neural network; Efficient frontier; Non-dominated sorting; Nonparametric statistical test
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی مبتنی بر مدل میانگین واریانس برای انتخاب دارایی نمونه کارهای محدود با استفاده از الگوریتم های تکاملی چند هدفه

چکیده انگلیسی

In this paper, a novel prediction based mean-variance (PBMV) model has been proposed, as an alternative to the conventional Markowitz mean-variance model, to solve the constrained portfolio optimization problem. In the Markowitz mean-variance model, the expected future return is taken as the mean of the past returns, which is incorrect. In the proposed model, first the expected future returns are predicted, using a low complexity heuristic functional link artificial neural network (HFLANN) model and the portfolio optimization task is carried out by using multi-objective evolutionary algorithms (MOEAs). In this paper, swarm intelligence based, multiobjective optimization algorithm, namely self-regulating multiobjective particle swarm optimization (SR-MOPSO) has also been proposed and employed efficiently to solve this important problem. The Pareto solutions obtained by applying two other competitive MOEAs and using the proposed PBMV models and Markowitz mean-variance model have been compared, considering six performance metrics and the Pareto fronts. Moreover, in the present study, the nonparametric statistical analysis using the Sign test and Wilcoxon rank test are also carried out, to compare the performance of the algorithms pair wise. It is observed that, the proposed PBMV model based approach provides better Pareto solutions, maintaining adequate diversity, and also quite comparable to the Markowitz model. From the simulation result, it is observed that the self regulating multiobjective particle swarm optimization (SR-MOPSO) algorithm based on PBMV model, provides the best Pareto solutions amongst those offered by other MOEAs.