دانلود مقاله ISI انگلیسی شماره 78839
ترجمه فارسی عنوان مقاله

یادگیری مجموعه ای از الگوریتم تکاملی مبتنی بر قاعده با استفاده از پرسپترون چند لایه برای حمایت از تصمیم گیری در مسائل معاملات سهام

عنوان انگلیسی
Ensemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78839 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 36, November 2015, Pages 357–367

ترجمه کلمات کلیدی
یادگیری مجموعه؛ محاسبات تکاملی؛ الگوریتم مبتنی بر قاعده؛ پرسپترون چند لایه؛ قضاوت روند - معاملات سهام
کلمات کلیدی انگلیسی
Ensemble learning; Evolutionary computation; Rule-based algorithm; Multi-layer perceptron; Trend judgment; Stock trading
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری مجموعه ای از الگوریتم تکاملی مبتنی بر قاعده با استفاده از پرسپترون چند لایه برای حمایت از تصمیم گیری در مسائل معاملات سهام

چکیده انگلیسی

Classification is a major research field in pattern recognition and many methods have been proposed to enhance the generalization ability of classification. Ensemble learning is one of the methods which enhance the classification ability by creating several classifiers and making decisions by combining their classification results. On the other hand, when we consider stock trading problems, trends of the markets are very important to decide to buy and sell stocks. In this case, the combinations of trading rules that can adapt to various kinds of trends are effective to judge the good timing of buying and selling. Therefore, in this paper, to enhance the performance of the stock trading system, ensemble learning mechanism of rule-based evolutionary algorithm using multi-layer perceptron (MLP) is proposed, where several rule pools for stock trading are created by rule-based evolutionary algorithm, and effective rule pools are adaptively selected by MLP and the selected rule pools cooperatively make decisions of stock trading. In the simulations, it is clarified that the proposed method shows higher profits or lower losses than the method without ensemble learning and buy&hold.