دانلود مقاله ISI انگلیسی شماره 78915
ترجمه فارسی عنوان مقاله

جانشین الگوریتم تکاملی با استفاده از مدل جایگزین در چارچوب بهینه سازی ترتیبی و محاسبات بهینه تخصیص بودجه ☆

عنوان انگلیسی
Evolutionary algorithm assisted by surrogate model in the framework of ordinal optimization and optimal computing budget allocation ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78915 2013 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 233, 1 June 2013, Pages 214–229

ترجمه کلمات کلیدی
الگوریتم تکاملی؛ بهینه سازی ترتیبی؛ محاسبات بهینه تخصیص بودجه؛ شبکه های عصبی مصنوعی؛ شبیه سازی تصادفی؛ بهینه سازی ترکیبی
کلمات کلیدی انگلیسی
Evolutionary algorithm; Ordinal optimization; Optimal computing budget allocation; Artificial neural network; Stochastic simulation; Combinatorial optimization
پیش نمایش مقاله
پیش نمایش مقاله  جانشین الگوریتم تکاملی با استفاده از مدل جایگزین در چارچوب بهینه سازی ترتیبی و محاسبات بهینه تخصیص بودجه ☆

چکیده انگلیسی

This work proposes an evolutionary algorithm (EA) that is assisted by a surrogate model in the framework of ordinal optimization (OO) and optimal computing budget allocation (OCBA) for use in solving the real-time combinatorial stochastic simulation optimization problem with a huge discrete solution space. For real-time applications, an off-line trained artificial neural network (ANN) is utilized as the surrogate model. EA, assisted by the trained ANN, is applied to the problem of interest to obtain a subset of good enough solutions, S. Also for real-time application, the OCBA technique is used to find the best solution in S, and this is the obtained good enough solution. Most importantly, a systematic procedure is provided for evaluating the performance of the proposed algorithm by estimating the distance of the obtained good enough solution from the optimal solution. The proposed algorithm is applied to a hotel booking limit (HBL) problem, which is a combinatorial stochastic simulation optimization problem. Extensive simulations are performed to demonstrate the computational efficiency of the proposed algorithm and the systematic performance evaluation procedure is applied to the HBL problem to quantify the goodness of the obtained good enough solution.