دانلود مقاله ISI انگلیسی شماره 78983
ترجمه فارسی عنوان مقاله

خوشه بندی خشن با استفاده از الگوریتم خوشه بندی فازی تعمیم یافته

عنوان انگلیسی
Rough clustering using generalized fuzzy clustering algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
78983 2013 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 46, Issue 9, September 2013, Pages 2538–2547

ترجمه کلمات کلیدی
خوشه بندی k-means خشن؛ جستجوی نزدیکترین همسایه؛ کشف دانش؛ محاسبات نرم
کلمات کلیدی انگلیسی
Rough k-means clustering; Nearest-neighbor search; Knowledge discovery; Soft computing
پیش نمایش مقاله
پیش نمایش مقاله  خوشه بندی خشن با استفاده از الگوریتم خوشه بندی فازی تعمیم یافته

چکیده انگلیسی

In this paper, we present a rough k-means clustering algorithm based on minimizing the dissimilarity, which is defined in terms of the squared Euclidean distances between data points and their closest cluster centers. This approach is referred to as generalized rough fuzzy k-means (GRFKM) algorithm. The proposed method solves the divergence problem of available approaches, where the cluster centers may not be converged to their final positions, and reduces the number of user-defined parameters. The presented method is shown to be converged experimentally. Compared to available rough k-means clustering algorithms, the proposed method provides less computing time. Unlike available approaches, the convergence of the proposed method is independent of the used threshold value. Moreover, it yields better clustering results than RFKM for the handwritten digits data set, landsat satellite data set and synthetic data set, in terms of validity indices. Compared to MRKM and RFKM, GRFKM can reduce the value of Xie–Beni index using the handwritten digits data set, where a lower Xie–Beni index value implies the better clustering quality. The proposed method can be applied to handle real life situations needing reasoning with uncertainty.