دانلود مقاله ISI انگلیسی شماره 79984
ترجمه فارسی عنوان مقاله

پیش فرض افت ارزش برای لیزینگ: برآورد پارامتری و ناپارامتری

عنوان انگلیسی
Loss given default for leasing: Parametric and nonparametric estimations
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
79984 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Banking & Finance, Volume 40, March 2014, Pages 364–375

ترجمه کلمات کلیدی
پیش فرض افت ارزش - رگرسیون و مدل درخت؛ مدل مخلوط محدود؛ لیزینگ؛ پیش بینی
کلمات کلیدی انگلیسی
C14; C38; C51; G17; G28Loss given default; Regression and model trees; Finite mixture models; Leasing; Forecasting
پیش نمایش مقاله
پیش نمایش مقاله  پیش فرض افت ارزش برای لیزینگ: برآورد پارامتری و ناپارامتری

چکیده انگلیسی

This study employs a dataset from three German leasing companies with 14,322 defaulted leasing contracts to analyze different approaches to estimating the loss given default (LGD). Using the historical average LGD and simple OLS-regression as benchmarks, we compare hybrid finite mixture models (FMMs), model trees and regression trees and we calculate the mean absolute error, root mean squared error, and the Theil inequality coefficient. The relative estimation accuracy of the methods depends, among other things, on the number of observations and whether in-sample or out-of-sample estimations are considered. The latter is decisive for proper risk management and is required for regulatory purposes. FMMs aim to reproduce the distribution of realized LGDs and, therefore, perform best with respect to in-sample estimations, but they show poor performance with respect to out-of-sample estimations. Model trees, by contrast, are more robust and outperform all other methods if the sample size is sufficiently large.