دانلود مقاله ISI انگلیسی شماره 98162
ترجمه فارسی عنوان مقاله

مکانیسم جدید الکترومغناطیس یادگیری تجربی برای بهینه سازی عددی

عنوان انگلیسی
A new experiential learning electromagnetism-like mechanism for numerical optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
98162 2017 27 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 86, 15 November 2017, Pages 321-333

ترجمه کلمات کلیدی
الگوریتم مکانیسم الکترومغناطیس مانند. متهوریستی، بهینه سازی عددی، بهره برداری،
کلمات کلیدی انگلیسی
Electromagnetism-like Mechanism algorithm; Metaheuristics; Numerical optimization; Exploitation;
پیش نمایش مقاله
پیش نمایش مقاله  مکانیسم جدید الکترومغناطیس یادگیری تجربی برای بهینه سازی عددی

چکیده انگلیسی

The Electromagnetism-like Mechanism algorithm (EM) is a population-based search algorithm which has shown good achievements in solving various types of complex numerical optimization problems so far. To date, the study on experience-based local search mechanism is relatively limited, and there is no study in the literature to integrate experience-based features into the EM. This work introduces an experience-learning feature into the EM for the first time. A new Experiential Learning Electromagnetism-like Mechanism algorithm (ELEM) is proposed in this paper. The ELEM is integrated with two new components. The first component is the particle memory concept which allows the particles to remember the details of their past search experience. The second component is the experience analysing and decision making mechanisms which enables the particles to adjust the settings for the coming iterations. Combining the advantages of this strong exploitation strategy and the powerful exploration mechanism of the EM, the proposed ELEM strikes a good balance in providing well diversified solutions with high accuracy. The results from extensive numerical experiments carried out using 21 challenging test functions show that ELEM is able to provide very competitive solutions and significantly outperforms other optimization techniques. It can thus be concluded from the results that the proposed ELEM performs well in solving high dimensional numerical optimization problems.