دانلود مقاله ISI انگلیسی شماره 98193
ترجمه فارسی عنوان مقاله

الگوریتم ترکیبی باشکوه با حافظه بر اساس مشکلات بهینه سازی عددی

عنوان انگلیسی
Memory based Hybrid Dragonfly Algorithm for numerical optimization problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
98193 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 83, 15 October 2017, Pages 63-78

ترجمه کلمات کلیدی
الگوریتم سنجاقک، بهینه سازی ذرات ذرات، هیبریداسیون، توابع معیار، مشکلات مهندسی، آزمون فریدمن،
کلمات کلیدی انگلیسی
Dragonfly algorithm; Particle Swarm Optimization; Hybridization; Benchmark functions; Engineering problems; Friedman’s test;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم ترکیبی باشکوه با حافظه بر اساس مشکلات بهینه سازی عددی

چکیده انگلیسی

Dragonfly algorithm (DA) is a recently proposed optimization algorithm based on the static and dynamic swarming behaviour of dragonflies. Due to its simplicity and efficiency, DA has received interest of researchers from different fields. However, it lacks internal memory which may lead to its premature convergence to local optima. To overcome this drawback, we propose a novel Memory based Hybrid Dragonfly Algorithm (MHDA) for solving numerical optimization problems. The pbest and gbest concept of Particle Swarm optimization (PSO) is added to conventional DA to guide the search process for potential candidate solutions and PSO is then initialized with pbest of DA to further exploit the search space. The proposed method combines the exploration capability of DA and exploitation capability of PSO to achieve global optimal solutions. The efficiency of the MHDA is validated by testing on basic unconstrained benchmark functions and CEC 2014 test functions. A comparative performance analysis between MHDA and other powerful optimization algorithms have been carried out and significance of the results is proved by statistical methods. The results show that MHDA gives better performance than conventional DA and PSO. Moreover, it gives competitive results in terms of convergence, accuracy and search-ability when compared with the state-of-the-art algorithms. The efficacy of MHDA in solving real world problems is also explained with three engineering design problems.