دانلود مقاله ISI انگلیسی شماره 98197
ترجمه فارسی عنوان مقاله

یک الگوریتم کلونی مصنوعی مبتنی بر رتبه بندی برای بهینه سازی عددی جهانی

عنوان انگلیسی
A ranking-based adaptive artificial bee colony algorithm for global numerical optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
98197 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 417, November 2017, Pages 169-185

ترجمه کلمات کلیدی
الگوریتم کلونی زنبور عسل مصنوعی، انتخاب رتبه سازگار، بهینه سازی عددی جهانی،
کلمات کلیدی انگلیسی
Artificial bee colony algorithm; Adaptive ranking selection; Global numerical optimization;
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم کلونی مصنوعی مبتنی بر رتبه بندی برای بهینه سازی عددی جهانی

چکیده انگلیسی

The artificial bee colony (ABC) algorithm is a powerful population-based metaheuristic for global numerical optimization and has been shown to compete with other swarm-based algorithms. However, ABC suffers from a slow convergence speed. To address this issue, the natural phenomenon in which good individuals always have good genes and thus should have more opportunities to generate offspring is the inspiration for this paper. We propose a ranking-based adaptive ABC algorithm (ARABC). Specifically, in ARABC, food sources are selected by bees to search, and the parent food sources used in the solution search equation are all chosen based on their rankings. The higher a food source is ranked, the more opportunities it will have to be selected. Moreover, the selection probability of the food source is based on the corresponding ranking, which is adaptively adjusted according to the status of the population evolution. To evaluate the performance of ARABC, we compare ARABC with other ABC variants and state-of-the-art differential evolution and particle swarm optimization algorithms based on a number of benchmark functions. The experimental results show that ARABC is significantly better than the algorithms to which it was compared.