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H I G H L I G H T S

• A user-preference-driven home energy management system called foresee is proposed.

• Foresee learns the preferences and needs of the occupants and acts on their behalf.

• Foresee predicts future comfort needs, energy costs and grid service availability.

• Foresee optimizes how a home operates to concurrently meet the occupants’ needs.

• Foresee is built upon lightweight algorithms for deployment on embedded platforms.
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A B S T R A C T

This paper presents foresee™, a user-centric home energy management system that can help optimize how a
home operates to concurrently meet users’ needs, achieve energy efficiency and commensurate utility cost
savings, and reliably deliver grid services based on utility signals. Foresee is built on a multiobjective model
predictive control framework, wherein the objectives consist of energy cost, thermal comfort, user convenience,
and carbon emission. Foresee learns user preferences on different objectives and acts on their behalf to operate
building equipment, such as home appliances, photovoltaic systems, and battery storage. In this work, machine-
learning algorithms were used to derive data-driven appliance models and usage patterns to predict the home’s
future energy consumption. This approach enables highly accurate predictions of comfort needs, energy costs,
environmental impacts, and grid service availability. Simulation studies were performed on field data from a
residential building stock data set collected in the Pacific Northwest. Results indicated that foresee generated up
to 7.6% whole-home energy savings without requiring substantial behavioral changes. When responding to
demand response events, foresee was able to provide load forecasts upon receipt of event notifications and
delivered the committed demand response services with 10% or fewer errors. Foresee fully utilized the potential
of the battery storage and controllable building loads and delivered up to 7.0-kW load reduction and 13.5-kW
load increase. These benefits are provided while maintaining the occupants’ thermal comfort or convenience in
using their appliances.

1. Introduction

The evolving electrical grid is facing increasing challenges. High
penetrations of intermittent renewable energy, fast-growing and vari-
able demand, and new pricing and market structures are all changing
the way the grid has traditionally operated. Although developing so-
lutions from the generation and grid perspective can alleviate some of
these challenges, analyzing the contribution and control of the demand
side can also provide a powerful perspective to address these grid-level
issues. Residential buildings in particular account for a higher

electricity consumption in the United States than any other sector, in-
cluding commercial buildings, industrial buildings, and transportation
[1]. Within the residential buildings sector, space heating and cooling,
water heating, and wet cleaning are among the top end-use types and
account for about half of the sector’s total electricity consumption.
These loads can be coordinated and scheduled to improve building
energy efficiency (EE) or provide grid services such as demand response
(DR) at the request of the utilities.

Home energy management systems (HEMS) enable the coordination
and scheduling of building equipment according to certain performance
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criteria. These systems can improve the efficiency, economics, and re-
liability of residential buildings with regards to their occupants and the
grid. Because of these benefits, HEMS have been a target of consider-
able recent research. A comprehensive review of the various types and
categories of HEMS can be found in [2].

Rule-based methods such as “if-then” rules [3,4] are widely used in
current HEMS because of their simplicity and low computation load.
However, these control strategies may be oversimplified and lack look-
ahead capabilities for predictive controls. Advanced HEMS usually in-
volve optimization techniques, such as mixed-integer programming
(MIP) [5–12], dynamic programming [13], or genetic algorithms [14].
Although these methods are able to solve more sophisticated scheduling
problems, many of them have practicality issues and may not be fea-
sible for implementation on resource-constrained computing platforms
that would typically be deployed in an actual household. For example,
MIP techniques include binary variables in the optimization process to
represent the on/off characteristics that can be found in most home
appliances, but the inclusion of mixed-integer variables renders the
resulting optimization problem nonconvex, and may require the use of
an expensive or computationally intensive commercial optimization
solver.

Many HEMS are able to communicate and coordinate with the
electrical grid, usually in the form of demand response or incentive
signals [2,4,5,8–11,15]. DR programs engage users by reducing or
shifting the electricity usage during peak periods to balance the demand
and supply in the grid. Pilot DR programs include time-based pricing
and direct-load control. In direct-load control programs, utility

companies or aggregators cycle home appliances, such as air condi-
tioners and water heaters, on and off during peak demand periods in
exchange for a financial incentive and lower electric bills for the con-
sumer. A review of existing residential DR techniques with a specific
view on pricing signals and optimization solvers was provided in [16]
and the performance of these techniques was compared using multiple
criteria. In [17], the residential appliances were categorized into dif-
ferent types based on their distinct spatial and temporal operation
characteristics, and optimization methods were explored to decide the
optimal scheduling of residential appliances for DR using MIP.

In contrast to many building loads, battery storage systems have
unique characteristics such as high flexibility and quick response, and
are becoming attractive DR assets because of the rapidly decreasing
battery cost [18]. Home battery systems help unlock the DR potential of
many building loads that would otherwise not be able to provide DR
services as a result of thermal comfort constraints. With home battery
systems, building loads could be easily shifted to avoid the peak de-
mand as well as improve the self-consumption of photovoltaic (PV)
generation. In turn, building loads and PV help reduce the battery size
while meeting the needs of end users and utilities. Because of the higher
availability and reliability of the DR resources enabled by a home
battery system, utilities are likely to provide greater incentives to offset
the initial capital cost of the battery. Prior residential DR research has
used either building loads [16,17], battery storage in the form of sta-
tionary storage or electric vehicles [5,19], or both [8,12,20,21]. How-
ever, if not properly controlled, home battery systems can increase the
overall energy consumption and electricity system emissions resulting

Nomenclature

Acronym

DR demand response
EE energy efficiency
MPC model predictive control
HEMS home energy management system
HVAC heating, ventilation, and air conditioning
PV photovoltaic
SOC state of charge
RBSA residential building stock assessment
MIP mixed-integer programming
TCL thermostatically controlled load
DER distributed energy resource

Parameters

α coefficient of the battery cycling fading
γ coefficient of the house model
β weighting factor of user preferences
UA surface heat loss coefficient (W/K)
η efficiency
C heat capacity or thermal capacitance (J/K)
H prediction horizon in model predictive control
ce utility rate of electricity ($/kWh)

Variables

J total objective function
T temperature (°C or °F)
P power consumption (+) or generation (−) (W)

mΔ flow rate of water draws (kg/s)
SOC battery state of charge (%)
Ee solar irradiance (W/m2)
U control variable of building equipment

Φ objective function for a single objective
I binary indicator for a scheduled cycle
ET elasped time from the scheduled start of a cycle
RT average runtime (prediction steps) of an appliance
t time step in model predictive control

Subscripts and superscripts

dhw domestic hot water
wh water heater
dw dishwasher
out outdoor condition
unctrl uncontrollable electrical loads
cd clothes dryer
grid net power from the electrical grid
low lower node of a water heater
up upper node of a water heater
bat battery
in indoor condition
c cooling mode of HVAC
h heating mode of HVAC
min minimum allowable value
max maximum allowable value
dis battery discharging
ch battery charging
nom nominal value
app home appliances
conv user convenience
cmft thermal comfort
dgrd equipment degradation
cost energy cost
carbon carbon dioxide emission
load building loads
Ah ampere-hour throughput of a battery
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