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a b s t r a c t 

In this work, employing a moving window to scan through every stock price time series over a period 

from 2 January 1986 to 20 October 2015, we use cross-correlations to measure the interdependence 

between stock prices, and we construct a corresponding minimal spanning tree for 170 U.S. stocks in 

every given window. We show how the asset tree evolves over time and describe the dynamics of its 

normalized length, centrality measures, vertex degree and vertex strength distributions, and single- and 

multiple-step edge survival ratios. We find that the normalized tree length shows a tendency to decrease 

over the 30 years. The power-law of vertex degree or vertex strength distribution does not hold for all 

trees. The survival ratio analysis reveals an increased stability of the dependence structure of the stock 

market as time elapses. We then examine the relationship between tree structure variation and market 

phenomena, such as average, volatility and tail risk of stock (market) return. Our main observation is that 

the normalized tree length has a positive relationship with the level of stock market average return, and 

it responds negatively to the market return volatility and tail risk. Furthermore, the majority of stocks 

have their vertex degrees significantly positively correlated to their average return, and significantly neg- 

atively correlated to their return volatility and tail risk. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

A quantitative description of the hierarchical structure is cru- 

cial for understanding the dynamics of complex systems [1] . In 

essence, the stock market is an example of a complex system con- 

sisting of many interacting components [2,3] . The correlation ma- 

trix of stock return time series, which plays a central role in in- 

vestment theory and risk management, can be used to extract in- 

formation about hierarchical organization of stock market. By using 

the correlation between pairs of elements as a similarity measure, 

some hierarchical clustering procedures have been proposed to se- 

lect the statistically reliable information of the correlation matrix 

[1] . 

The hierarchical tree obtained by applying single linkage clus- 

ter analysis (SLCA) and average linkage cluster analysis (ALCA) to 

the correlation matrix, can well identify groups of stocks belong- 

ing to the same economic sector [4,5,6] . In addition to the hier- 

archical trees, one can also associate correlation based networks 

with the correlation matrix using clustering algorithm. In the cor- 

relation based networks, a subset of links which are highly in- 
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formative about the hierarchical structure of the system are se- 

lected. For example, the minimum spanning tree (MST), which was 

firstly introduced in Mantegna (1999), is a correlation based tree 

associated with the SLCA. A lot of subsequent studies constructed 

MSTs to investigate the economic properties of stock returns [7–

15] . Other examples of correlation based networks are the pla- 

nar maximally filtered graph (PMFG) [16] , and the average linkage 

minimum spanning tree (ALMST) [17] . The PMFG presents a graph 

structure which is richer than the one of the MST, and has been 

used to investigate stock return time series in Refs. [6,9,16,18,19] . 

To evaluate the statistical reliability of nodes in a hierarchical tree 

and links in a correlation based network, a bootstrap procedure of 

the time series has been devised in Refs. [17,20] . In order to quan- 

tify and compare the performance of different filtering procedures, 

a useful measure using the Kullback–Leibler distance has been pro- 

posed [21] . It was shown that the Kullback–Leibler distance is very 

good for comparing correlation matrices [21] . In addition to the 

modeling of correlation matrix for stock return time series, a lot of 

researches have constructed similar correlation based networks for 

industry indices [22] , stock market indices [23,24,25] , world cur- 

rencies [26] , and government bond market indices [27] . 

The empirical analysis of correlation based networks would be 

static or dynamic. Refs. [4,7,8,18] focused on the static network, i.e. 
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investigating the properties of the network constructed for a long 

time period, such as network topology, hierarchical structure, or 

taxonomic studies in terms of economic sector, region, or other 

characteristics. However, because each stock responds differently 

to external information like the same economic announcements 

or market news, the correlation among them will vary. More and 

more studies constructed dynamic stock correlation networks, and 

investigated structural changes [9,11,12,15,28] , topological stability 

[9,10,14,30] , structural differences between crisis and non-crisis pe- 

riods [11,12,14,29] , and relationship between volatility and network 

properties [13] . For example, Micciche et al. [10] investigated the 

time series of the degree of minimum spanning trees obtained by 

using a correlation based clustering procedure which starts from 

asset return. The analysis showed that the degree of stocks has a 

very slow dynamics with a time scale of several years. Sienkiewicz 

et al. [12] provided empirical evidence that there is a dynamic 

structural and topological first order phase transition in the time 

range dominated by a crash. By investigating the ability of the net- 

work to resist structural or topological change, Yan et al. [19] found 

that the PMFG before the US sub-prime crisis has a stronger ro- 

bustness against the intentional topological damage than the other 

two non-crisis periods. Kocheturov et al. [29] studied cluster struc- 

tures of market networks constructed from correlation matrix of 

returns of the stocks traded in the USA and Sweden. Their main 

observation was that in non-crisis periods of time cluster struc- 

tures change more chaotically, while during crises they show more 

stable behavior and fewer changes. 

These existing studies mainly relate stock correlation network 

variations to the extreme events such as global financial crises. 

However, the general relationships between network structure 

variation and market phenomena can help us understand the in- 

teraction between network and stock market dynamics, thus it can 

be a good guide for risk management of stock investment. In this 

paper, we investigate the dynamics of correlations present between 

pairs of U.S. stocks traded in U.S. market by studying correlation 

based networks. We also investigate the general relationship be- 

tween network structure variation and market dynamics. The study 

is performed by using stock time series during the time period 

from January 1986 to October 2015, which spans near 30 years. We 

begin with the construction of network based on raw data of stock 

in Section 2 . In Section 3 we describe the network topology struc- 

tures and market phenomena. Section 4 is empirical study and re- 

sults. In the last section we present a few conclusions. 

2. Network construction 

A network is usually defined as a collection of vertices con- 

nected by edges. If we consider a stock correlation network, each 

stock will be a network vertex. Each pair of stocks is connected 

with an edge, with its edge weight equal to the Pearson’s corre- 

lation of their corresponding stock returns in a certain time pe- 

riod. Furthermore, we can characterize the dynamics of stock cor- 

relation network by calculating the cross-correlation between two 

stocks for the moving time periods. The sample data we collected 

are the daily returns of N stocks traded in the U.S. stock market. 

The sample time period length is T days. The network evolution is 

analyzed by setting a time window of length w days and moving 

this window along time. One network is obtained by considering 

the time series inside each window. This window is displaced by 

an amount of τ days and a new network is obtained after each 

displacement. This process is repeated until the end of the original 

time series is reached. For example, the first network will be con- 

structed from the time series starting at day t 1 
1 

= 1 and ending at 

day t 1 
2 

= w , the second network will be constructed from the time 

series starting at day t 2 1 = 1 + τ and ending at day t 2 2 = τ + w , the 

third network will be constructed from the time series starting at 

day t 3 
1 

= 1 + 2 τ and ending at day t 3 
2 

= 2 τ + w , and so on. Hence, 

we achieved a total of M ( M = 1 + [( T −w )/ τ ], [ • ] denotes the ceil- 

ing function) networks. Let R m 

i 
(t) be the log return of stock i at 

day t in the m th window, where m = 1, 2, ���, M . 

R 

m 

i (t) = ln P m 

i (t) − ln P m 

i (t − 1) (1) 

where P m 

i 
(t) is the closing price of stock i at day t . The correlation 

between stock i and j ( i = 1, 2, ���, N , j = 1, 2, ���, N ) in the m th 

window can be measured by Pearson’s correlation of series R m 

i 
and 

R m 

j 
. 
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where 〈 ���〉 denotes the expected value, and ρm 

i, j 
∈ [ −1 , 1] . Specif- 

ically, if i = j then ρm 

i, j 
= 1 . Thus we construct the m th stock corre- 

lation network G 

m ( V, E m ), where V = {1, 2, ���, N } denotes the node 

set, and the network edge set E m can be denoted by { e m 

i j 
= ρm 

i, j 
| i = 

1 , 2 , · · · , N, j = 1 , 2 , · · · , N} . So e m 

i j 
reflects the edge weight between 

node i and j in the network, and G 

m ( V, E m ) is an undirected and 

weighted network. 

The correlation coefficient of a pair of stocks cannot be used 

as a distance between the two stocks because it does not fulfill 

the three axioms that define a metric. However a metric can be 

defined using as distance a function of the correlation coefficient. 

The correlation coefficient ρm 

i, j 
is transformed to a distance metric 

d m 

i, j 
[4] . 

d m 

i, j = 

√ 

2(1 − ρm 

i, j 
) (3) 

The d m 

i, j 
fulfills the three axioms of a metric distance: 1) d m 

i, j 
= 0 

if and only if i = j ; 2) d m 

i, j 
= d m 

j,i 
and 3) d m 

i, j 
≤ d m 

i,k 
+ d m 

k, j 
[4] . Now 

the edge weight e m 

i j 
can be measured by d m 

i, j 
, and the correspond- 

ing edge set E m can be denoted by { e m 

i j 
= d m 

i, j 
| i = 1 , 2 , · · · , N, j = 

1 , 2 , · · · , N} . We have e m 

i j 
= d m 

i, j 
∈ [0 , 2] . The full connected network 

G 

m ( V, E m ) is then used to determine the minimal spanning tree 

MST m , which is a simply connected graph that links the N ver- 

tices with the N −1 edges such that the sum of all edge weights 

is minimum. The minimal spanning tree can provide an easy way 

to extract the most important correlations and information in the 

stock market while retaining the simplest structure and enabling 

the ability to visualize the relationships across stocks. A general 

approach to the construction of the MST m is as follows [9,31] . 

Step 1: Start with an empty graph. Make an ordered list of 

edges in G 

m ( V, E m ), ranking them by increasing edge weight 

d m 

i, j 
. 

Step 2: Take the first element in the list and add the edge to 

the graph. 

Step 3: Take the next element and add the edge if the resulting 

graph is still a tree; otherwise discard it. 

Step 4: Iterate the process from Step 3 until all pairs have been 

exhausted. 

During the whole T days period, the network construction pro- 

cedure is repeated M times, and hence we have M consecu- 

tive networks. 
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