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h i g h l i g h t s

• We use a novel Bayesian inference procedure for the Lyapunov exponent.
• We apply the new technique to daily stock data for a group of six countries.
• The interaction between returns and volatility is taken into consideration jointly.
• We employ Sequential Monte Carlo techniques.
• The evidence shows that there is noisy chaos both before and after the crisis.
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a b s t r a c t

We use a novel Bayesian inference procedure for the Lyapunov exponent in the dynamical
system of returns and their unobserved volatility. In the dynamical system, computation
of largest Lyapunov exponent by traditional methods is impossible as the stochastic
nature has to be taken explicitly into account due to unobserved volatility. We apply the
new techniques to daily stock return data for a group of six countries, namely USA, UK,
Switzerland, Netherlands, Germany and France, from 2003 to 2014, bymeans of Sequential
Monte Carlo for Bayesian inference. The evidence points to the direction that there is indeed
noisy chaos both before and after the recent financial crisis. However,when amuch simpler
model is examined where the interaction between returns and volatility is not taken into
consideration jointly, the hypothesis of chaotic dynamics does not receive much support
by the data (‘‘neglected chaos’’).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinearmodels have become popular over the last decades because datasets often seem to exhibit nonlinearities. How-
ever, very often significant misspecifications result from ignoring irregular periodicity behaviours and strong dependence
upon initial conditions. In this context, it would seemmeaningful to test for the presence of chaotic behaviours that have not
been already detected yet, in otherwords to test for ‘‘neglected chaos’’. Thiswouldmake sure that no functional relationships
expressing chaotic behaviours are neglected and that no termswith explanatory power have been left out of themodel. Such
models, from now on, will be referred to as ‘‘neglected chaos’’ approaches/tests. Meanwhile, an artificial neural network

* Corresponding author.
E-mail addresses:m.tsionas@lancaster.ac.uk (M.G. Tsionas), pmichael@central.ntua.gr (P.G. Michaelides).

http://dx.doi.org/10.1016/j.physa.2017.04.060
0378-4371/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2017.04.060
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.04.060&domain=pdf
mailto:m.tsionas@lancaster.ac.uk
mailto:pmichael@central.ntua.gr
http://dx.doi.org/10.1016/j.physa.2017.04.060


96 M.G. Tsionas, P.G. Michaelides / Physica A 482 (2017) 95–107

(ANN) could be used to test for neglected chaos, using its universal approximation ability [1], where – technically speaking
– the model becomes an augmented feed-forward q-perceptron ANN.

The field of chaos was developed several decades ago in Physics to explain some strange-looking behaviours that lacked
order. Practically, it refers to the study of unpredictable behaviours in systems that are inherently complex. According to
Lahmiri [2]: ‘‘a chaotic system is a random-looking nonlinear deterministic process with irregular periodicity and sensitivity
to initial conditions’’. Up until recently, the various tests for chaotic behaviour have been implemented primarily in the fields
of Science and Engineering, especially in meteorological and climate change data where noise is usually absent. However,
over the last years, chaos has been the subject of research in various fields, including those of economics and finance, where
a typical approach in these fields has been that the dominant dynamics are of a stochastic nature, usually described by a
given probability function. Relatively recently, some researchers in the field of finance and financial economics, have found
some evidence in favour of chaotic dynamics. [3] found evidence of chaotic dynamics in the Indian stock market, [4] in the
Tehran stock market, [5] in the French CAC 40 index, [6] in the Turkish Lira–USD exchange rate, and [7] in exchange rates.
In this context, tests for chaos using ANNs have gained popularity [8,9].

In financial time series, however, it is not sufficient to account for a flexible functional form to represent state dynamics.
Time-varying conditional variance is a key characteristic of these series and, often, this is ignored or modelled with simple
models such as the EGARCH [2]. Nevertheless, stochastic volatilitymodels are better suited for financial data but considerably
more computationally intensive. In this framework, econophysics tools have become available and are nowadays used for
modelling complex financial systems. For the advantages of these approaches and for relevant applications see, among
others, [10–13]. In the words of BenSaïda [8]: ‘‘[F]ew studies have considered studying the dynamics of financial and
economic time series in times of political or economic instability to better understand their behaviour from an econophysics
perspective’’.

In this paper, we consider a bivariate dynamical system consisting of returns and their volatility. Both functional forms
are modelled via ANNs and feedback is allowed between returns and volatility. We propose a novel way of computing the
largest Lyapunov exponent as the dynamical system is inherently stochastic due to the presence of stochastic volatility.More
precisely, in this work, we test for the presence of noisy chaotic dynamics before and after the 2008 international financial
crisis that could be seen as an Early Warning Mechanism (EWM). EWMs are important elements of a carefully designed
macroprudential policy that could potentially help reduce the high risk associated with financial and economic crises. In
this context, EWMs should not only have good statistical properties and good forecasting performance but should also be
based on testing for the existence of chaos. In this work, the importance of testing for chaos lies on the appropriate technique
suggested which is based on a bivariate dynamical system of returns and their volatility, which is a crucial requirement for
the EWM.

The data employed consist of stock indices for six major countries, namely: USA, UK, Switzerland, Netherlands, Germany
and France, and their corresponding implied volatility indices. The sample covers the period from 15th May 2003 to 25th
November 2014 in order to capture the financial crisis.

2. Model

2.1. General

Suppose a time series {xt; t = 1, . . . , T } has the representation

yt = f (yt−L, yt−2L, . . . , yt−mL) + ut , ut |σt ∼ N(0, σ 2
t ), t = 1, . . . , T , (1)

where σ 2
t is the conditional variance, m is the embedding dimension (or the length of past dependence) and L is the time

delay. The state space representation is:

F :

⎡⎢⎢⎣
yt−L
yt−2L
...

yt−mL

⎤⎥⎥⎦ →

⎡⎢⎢⎣
yt = f (yt−L, yt−2L, . . . , yt−mL) + εt

yt−L
...

yt−(m−1)L

⎤⎥⎥⎦ . (2)

Given initial conditions y0 and a perturbation △y0 the time series after t periods changes by △y(y0, t). The Lyapunov
exponent is defined as:

λ = lim
τ→∞

τ−1 ln
|△y(y0, τ )|

|∆y0|
, (3)

and measures the average exponential divergence (positive exponent) or convergence (negative exponent) rate between
nearby trajectories within time horizons that differ in terms of initial conditions by an infinitesimal amount. The Jacobian
matrix J at a point χ is

J t (x) =
df t (χ)
dχ

. (4)
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