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h i g h l i g h t s

• Multifractality is investigated in Moroccan family business stock returns.
• Results are compared against Casablanca Stock Exchange main indices: MASI and MADEX.
• Evidence of multifractality is found in returns on family business stocks, MASI, and MADEX.
• Short and long dynamics in family business returns are different from those of market indices.
• Family business stocks are less risky than the market.

a r t i c l e i n f o

Article history:
Received 6 April 2016
Received in revised form 1 May 2017
Available online 3 June 2017

Keywords:
Multifractal
Multifractal detrended fluctuation analysis
Stock market
Family business
Emergent markets

a b s t r a c t

In this paper, long-range temporal correlations at different scales in Moroccan family busi-
ness stock returns are investigated. For comparison purpose, presence of multifractality is
also investigated in Casablanca Stock Exchange (CSE) major indices: MASI which is the all
shares index and MADEX which is the index of most liquid shares. It is found that return
series of both family business companies and major stock market indices show strong
evidence of multifractality. In particular, empirical results reveal that short (long) fluc-
tuations in family business stock returns are less (more) persistent (anti-persistent) than
short fluctuations in market indices. In addition, both serial correlation and distribution
characteristics significantly influence the strength of themultifractal spectrums of CSE and
family business stocks returns. Furthermore, results from multifractal spectrum analysis
suggest that family business stocks are less risky. Thus, such differences in price dynamics
could be exploited by investors and forecasters in active portfolio management.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hurst exponent [1–3] has been applied as a measure of long memory in time series to better describe the dynamics of its
structural correlations with applications in engineering and science [4–16], and also in econophysics [17–33]. In particular,
multifractal detrended fluctuation analysis (MF-DFA) [3] has becomemore attractive than conventional DFA [2] as it allows
detecting long range correlations that varies with time scale. Indeed, DFA [2] is capable to detect presence of monofractal
scaling properties in a given time series; however, it cannot be applied to detect presence of multifractality. In this regard,
Kantelhardt et al. [3] proposed the MF-DFA as a general extension of the classical DFA [2] to characterize multifractality in
non-stationary time series. In particular, MF-DFA is suitable to examine presence or absence of long memory in short and
long variations of the time series contrary to standard DFA. In short, MF-DFA leads to a much better understanding of long
memory complexity in non-stationary time series.
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In econophysics, MF-DFA was effective in the analysis of economic and financial data where evidence of multifractality
was found [17–36]. In this regard, multifractal analysis by using MF-DFA is a common technique to investigate long-range
dependence in short and long variations in asset prices. Such investigations are essential to build prediction models to
improve portfoliomanagement in terms of optimal asset allocation and riskmanagement. For instance, one could determine
whether or not prices possess long-memory to decide which type of forecasting model is appropriate.

Several works found in the literature have examined multifractal characteristics in stock markets [37,38]. However, no
attention has been given to family business stocks which are known to have a distinct ability for competitive advantage [39],
to attract customers and increase sales [40], to exhibit high profitability [41], and to growat international level [41]. Certainly,
these abilities are attractive for investors and managers. Therefore, the main purpose of this paper is to study long memory
at different scales in Moroccan family business stock returns by using MF-DFA. Second, for comparison purpose, we also
investigate this issue in returns of Casablanca Stock Exchange (CSE) major indices; namely, the MASI which is the all shares
index and the MADEX which is the index of most liquid shares traded on CSE.

Indeed, our paper contributes to the literature by examining multifractal patterns in family business stock returns from
different industrial sectors in an emergent stockmarket; for instance, the CSE inMorocco. In particular,we seek to investigate
whether multifractal exists in these returns, and whether there are differences between dynamics of family business stock
returns and dynamics of stock market returns. These interesting points surely help understanding the dynamics of family
business stock returns in comparisonwith themarketmajor indices. In addition, sources ofmultifractal are also investigated.

Our methodology is described as follows. The MF-DFA will be applied to return series of an index used to represent all
family business listed on CSE. Similarly, MF-DFA will be applied to MASI and MADEX. Then, Hurst exponent is obtained
at each scale for each market index; namely, family business index, MASI, and MADEX. In particular, we seek to check
if the scaling behaviour of small fluctuations (corresponding to high scales) is different from that of the large variations
(corresponding to low scales) in all indices under study. Thus, we can compare multifractal behaviour in returns on family
business stock returns with multifractal behaviour in returns of CSE major indices. In this regard, the relationship between
Hurst exponent and scale will be used to describe long memory in short and long fluctuations in return series of all three
considered indices. In addition, for each market index, the time-varying singularity spectrumwill be examined to assess the
magnitude ofmultifractality. Furthermore, the standardmultifractalmass functionwill be employed to examinemultifractal
spectrumdistribution of return series at different scales. Finally, shuffled and surrogate return series are analysed to examine
sources of multifractality.

Our paper is organized as follows. Next section briefly describesMF-DFA. Section 3 presents the empirical results. Finally,
last section concludes our work.

2. Methods

The multifractal detrended fluctuation analysis (MF-DFA) [3] is an extension of the classical DFA [2] used to estimate
Hurst exponent of a time series at different scales. Let {xk : k = 1, 2, . . . ,N} be a time series of length N . Then, MF-DFA is
based on the following computational steps [33]:
Step one: the profile Yi (i = 1, 2, . . . ,N) is determined as follows:

Yi =

i∑
k=1

(xk − x̄) (1)

where x̄ is the average of the time series xk.
Step two: the profile Yi (i = 1, 2, . . . ,N) is divided into Ns non-overlapping segments (windows) of equal length s such that:

Ns = int
(
N
s

)
. (2)

This procedure is repeated starting from the opposite end. Indeed, a small part at the end of the profile Yi could not be
included in any time segment asN may not be an integermultiple of the time scale s. Consequently, 2NS segments (windows)
are obtained.
Step three: a least square fit is employed to calculate the polynomial local trend for each of the 2NS segments. Then, the
variance is calculated by eliminating the local trend of each sub-interval v (for v = 1, 2, . . . ,Ns) as follows:

F 2 (s, v) =
1
s

s∑
i=1

[Y ((v − 1) s + i) − Pv (j)]2 (3)

or, for v = Ns + 1, Ns + 2, . . . ,Ns as follows:

F 2 (s, v) =
1
s

s∑
i=1

[Y (N − (v − Ns) s + i) − Pv (j)]2 (4)

where Pv(j) is the fitting polynomial in segment ν.
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